scholarly journals Plasmotype condition nuclear pleiotropic effects on clock and fitness in barley

2021 ◽  
Author(s):  
Eyal Bdolach ◽  
Manas Ranjan Prusty ◽  
Lalit Dev Tiwari ◽  
Khalil Kashkush ◽  
Eyal Fridman

In plants, the role of chloroplasts and mitochondria (plasmotype) in controlling circadian clock plasticity and overall plant robustness has not been elucidated. In this study, we investigated the rhythmicity of chlorophyll fluorescence (Chl F) clock output , and fitness in the field at optimal and elevated temperatures, in three different barley populations. First, we examined a reciprocal DH population between two wild barley (Hordeum vulgare ssp. spontaneum), in which we identified two pleiotropic QTLs (frp2.1 and amp7.1) that modulate clock and fitness including conditioning of these effects by plasmotype diversity. In the second population, a complete diallel consisting of 11 genotypes (reciprocal hybrids differing in plasmotype), we observed a gradual reduction in plasmotype, ranging from 26% and 15% for Chl F and clock measurements to 5.3% and 3.7% for growth and reproductive traits, respectively. The third population studied was a collection of cytolines in which nine different wild plasmotypes replaced the cultivated Noga (H. vulgare) plasmotype. Here, the order and magnitude of the effects of the plasmotypes differed from what we observed in the diallel population, with the greatest effect of plasmotype diversity observed for clock period and amplitude. Comparison of the chloroplast sequences suggests several candidate genes in the plastid-encoded RNA polymerase (PEP) complex that may be responsible for the observed plasmotype effects. Overall, our results unravel previously unknown cytonuclear epistatic interactions that controls clock performance while also having pleiotropic effects on a plant field characteristics.

Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2448
Author(s):  
Kenza Lakhssassi ◽  
Malena Serrano ◽  
Belén Lahoz ◽  
María Pilar Sarto ◽  
Laura Pilar Iguácel ◽  
...  

The aim of this study was to characterize and identify causative polymorphisms in the leptin receptor (LEPR) gene responsible for the seasonal variation of reproductive traits in sheep. Three reproductive seasonality traits were studied: the total days of anoestrous (TDA), the progesterone cycling months (P4CM) and the oestrous cycling months (OCM). In total, 18 SNPs were detected in 33 ewes with extreme values for TDA and OCM. Six SNPs were non-synonymous substitutions and two of them were predicted in silico as deleterious: rs596133197 and rs403578195. These polymorphisms were then validated in 239 ewes. The SNP rs403578195, located in exon 8 and leading to a change of alanine to glycine (Ala284Gly) in the extracellular domain of the protein, was associated with the OCM trait, being the G allele associated with a decrease of 12 percent of the OCM trait. Haplotype analyses also suggested the involvement of other non-synonymous SNP located in exon 20 (rs405459906). This SNP also produces an amino acid change (Lys1069Glu) in the intracellular domain of the protein and segregates independently of rs403578195. These results confirm for the first time the role of the LEPR gene in sheep reproductive seasonality.


2014 ◽  
Vol 27 (6) ◽  
pp. 557-566 ◽  
Author(s):  
Shuai Hu ◽  
Xiaoying Zhou ◽  
Xiaoying Gu ◽  
Shulin Cao ◽  
Chengfang Wang ◽  
...  

Like many other filamentous ascomycetes, Fusarium graminearum contains two genes named CPK1 and CPK2 that encode the catalytic subunits of cyclic AMP (cAMP)-dependent protein kinase A (PKA). To determine the role of cAMP signaling in pathogenesis and development in F. graminearum, we functionally characterized these two genes. In addition, we generated and characterized the cpk1 cpk2 double and fac1 adenylate cyclase gene deletion mutants. The cpk1 mutant was significantly reduced in vegetative growth, conidiation, and deoxynivalenol production but it had increased tolerance to elevated temperatures. It was defective in the production of penetration branches on plant surfaces, colonization of wheat rachises, and spreading in flowering wheat heads. Deletion of CPK1 had no effect on perithecium development but the cpk1 mutant was defective in ascospore maturation and releasing. In contrast, the cpk2 mutant had no detectable phenotypes, suggesting that CPK2 contributes minimally to PKA activities in F. graminearum. Nevertheless, the cpk1 cpk2 double mutant had more severe defects in vegetative growth and rarely produced morphologically abnormal conidia. The double mutant, unlike the cpk1 or cpk2 mutant, was nonpathogenic and failed to form perithecia on self-mating plates. Therefore, CPK1 and CPK2 must have overlapping functions in vegetative growth, differentiation, and plant infection in F. graminearum. The fac1 mutant was also nonpathogenic and had growth defects similar to those of the cpk1 cpk2 mutant. However, deletion of FAC1 had no effect on conidium morphology. These results indicated that CPK1 is the major PKA catalytic subunit gene and that the cAMP-PKA pathway plays critical roles in hyphal growth, conidiation, ascosporogenesis, and plant infection in F. graminearum.


2009 ◽  
Vol 66 (7) ◽  
pp. 1515-1519 ◽  
Author(s):  
Suchana Chavanich ◽  
Voranop Viyakarn ◽  
Thepsuda Loyjiw ◽  
Priyapat Pattaratamrong ◽  
Anchalee Chankong

Abstract Chavanich, S., Viyakarn, V., Loyjiw, T., Pattaratamrong, P., and Chankong, A. 2009. Mass bleaching of soft coral, Sarcophyton spp. in Thailand and the role of temperature and salinity stress. – ICES Journal of Marine Science, 66: 1515–1519. From June to October 2006 and 2007, mass bleaching of the soft coral, Sarcophyton spp., occurred for the first time in the upper Gulf of Thailand. Approximately 90% of the populations experienced extensive bleaching, and almost 95% of colonies were affected. Field observations also revealed that fragmentation of Sarcophyton spp. set in 1 month after the onset of bleaching. Some colonies started to recover to some extent by the end of July, with 95% of the population of Sarcophyton spp. recovering by October. Both acute and chronic trials were conducted to determine whether temperature and/or salinity triggered bleaching. In the acute tests, Sarcophyton spp. at 40°C and salinity 20 psu were completely bleached, and death occurred after 57 and 204 h, respectively. However, the colonies at 40 psu could survive through the experimental trial. In the chronic tests, Sarcophyton spp. died when exposed to 34°C, whereas complete bleaching and mortality of Sarcophyton spp. occurred at salinities of 10 and 49 psu. We conclude that elevated temperatures had a greater effect on the bleaching of Sarcophyton spp. than did salinity.


2020 ◽  
Vol 65 (1) ◽  
pp. 121-132
Author(s):  
Dariusz Kużelewski

Abstract The objective of the paper is to present the role of the non-professional judge in Poland as an important manifestation of civic culture based on citizens’ activity in the sphere of justice among other things. The paper also highlights the importance of an appropriate selection of citizens who are to adjudicate and possibly place restrictions on access to judicial functions using the example of Polish law. The last part addresses the problem of the gradual reduction of the participation of lay judges in the Polish justice system and the controversial attempts to halt this trend, such as the introduction of lay judges to the Supreme Court and the start of discussions on the introduction of the justice of the peace to common courts.


Genetika ◽  
2014 ◽  
Vol 46 (2) ◽  
pp. 591-599 ◽  
Author(s):  
Mehrangiz Fathi ◽  
Ghorban Elyasi-Zarringhobaie

The induction and regulation of broodiness is of the most important role of prolactin in avian species. In this study, the association between prolactin promoter region alleles and reproductive traits in Fars native turkey was investigated. These traits consisted of mean egg weight (MEW), number of egg (EN) and egg mass, during the first laying period. In total, 115 laying turkeys, randomly selected from the flock of the Breeding Center for Fars Native turkey, and DNA was purificated from blood samples, 231 bp of prolactin promoter region was amplified and Genotype of Samples was determinate by PCR-SSCP technique were genotyped. Two alleles D and I were identified. Based on the results obtained, the frequency of D and I alleles were 0.67 and 0.33, respectively. Frequencies of DD, II and ID genotypes were 0.385, 0.044 and 0.571, respectively. The association analysis between the polymorphism PRL gene promoter region and egg performance was carried out. Significant relationship was found between genotypes with egg production (P<0.01). Individuals with II genotype produced higher egg production than DD and ID genotype. The results of current study showed that using information of genes related to egg production could be used to improve the performance of native turkey of East Azerbaijan province.


2018 ◽  
Author(s):  
Mathias Wiegmann ◽  
Andreas Maurer ◽  
Anh Pham ◽  
Timothy J. March ◽  
Ayed Al-Abdallat ◽  
...  

AbstractSince the dawn of agriculture, crop yield has always been impaired through abiotic stresses. In a field trial across five locations worldwide, we tested three abiotic stresses, nitrogen deficiency, drought and salinity, using HEB-YIELD, a selected subset of the wild barley nested association mapping population HEB-25. We show that barley flowering time genes Ppd-H1, Sdw1, Vrn-H1 and Vrn-H3 exert pleiotropic effects on plant development and grain yield. Under field conditions, these effects are strongly influenced by environmental cues like day length and temperature. For example, in Al-Karak, Jordan, the day length-sensitive wild barley allele of Ppd-H1 was associated with an increase of grain yield by up to 30% compared to the insensitive elite barley allele. The observed yield increase is accompanied by pleiotropic effects of Ppd-H1 resulting in shorter life cycle, extended grain filling period and increased grain size. Our study indicates that the adequate timing of plant development is crucial to maximize yield formation under harsh environmental conditions. We provide evidence that wild barley germplasm, introgressed into elite barley cultivars, can be utilized to improve grain yield. The presented knowledge may be transferred to related crop species like wheat and rice securing the rising global food demand for cereals.


Sign in / Sign up

Export Citation Format

Share Document