scholarly journals mTOR Inhibition Overcomes RSK3-mediated Resistance to BET Inhibitors in Small Cell Lung Cancer

2021 ◽  
Author(s):  
Anju Kumari ◽  
Lisa Gesumaria ◽  
Yan-Jin Liu ◽  
V Keith Hughitt ◽  
Xiaohu Zhang ◽  
...  

Purpose: SCLC is a recalcitrant malignancy with limited treatment options. BET inhibitors have shown promising preclinical activity in SCLC, but their broad sensitivity spectrum limits their clinical prospects in this malignancy. Drug combination could be a solution. Experimental design: We performed high-throughput drug combination screens in SCLC cell lines to identify potential therapeutics synergizing with BET inhibitors. Validation was performed in SCLC cell lines and patient-derived xenograft models. Genome-wide RNA sequencing of xenograft tumors was performed to determine the mechanism underlying the synergy of the drug combination. Results: Inhibitors of the PI-3K-AKT-mTOR pathway were the top candidates from the screens. Among the therapeutics targeting this pathway, mTOR inhibitors showed the highest degree of synergy with BET inhibitors in vitro. Furthermore, the combination of these two classes of drugs showed superior antitumor efficacy and tolerability in vivo. Using both in vitro and in vivo SCLC models, we demonstrate that BET inhibitors activate the intrinsic apoptotic cascade, and mTOR inhibitors further enhance these apoptotic effects. Mechanistically, BET inhibitors activate the TSC2-mTOR-p70S6K1 signaling cascade by upregulating RSK3, an upstream kinase of TSC2. Activation of p70S6K1 leads to BAD phosphorylation and cell survival. mTOR inhibition blocks this survival signaling cascade and potentiates the antitumor effects of BET inhibitors. Conclusions: Our results demonstrate that RSK3 upregulation is a novel resistance mechanism of BET inhibitors in SCLC, and mTOR inhibition can overcome this resistance and enhance apoptosis. These findings provide a rationale to evaluate the combination of mTOR and BET inhibitors in patients with SCLC.

Blood ◽  
2004 ◽  
Vol 104 (13) ◽  
pp. 4181-4187 ◽  
Author(s):  
Patrick Frost ◽  
Farhad Moatamed ◽  
Bao Hoang ◽  
Yijiang Shi ◽  
Joseph Gera ◽  
...  

Abstract In vitro studies indicate the therapeutic potential of mTOR inhibitors in treating multiple myeloma. To provide further support for this potential, we used the rapamycin analog CCI-779 in a myeloma xenograft model. CCI-779, given as 10 intraperitoneal injections, induced significant dose-dependent, antitumor responses against subcutaneous growth of 8226, OPM-2, and U266 cell lines. Effective doses of CCI-779 were associated with modest toxicity, inducing only transient thrombocytopenia and leukopenia. Immunohistochemical studies demonstrated the antitumor responses were associated with inhibited proliferation and angiogenesis, induction of apoptosis, and reduction in tumor cell size. Although CCI-779-mediated inhibition of the p70 mTOR substrate was equal in 8226 and OPM-2 tumor nodules, OPM-2 tumor growth was considerably more sensitive to inhibition of proliferation, angiogenesis, and induction of apoptosis. Furthermore, the OPM-2 tumors from treated mice were more likely to show down-regulated expression of cyclin D1 and c-myc and up-regulated p27 expression. Because earlier work suggested heightened AKT activity in OPM-2 tumors might induce hypersensitivity to mTOR inhibition, we directly tested this by stably transfecting a constitutively active AKT allele into U266 cells. The in vivo growth of the latter cells was remarkably more sensitive to CCI-779 than the growth of control U266 cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3719-3719
Author(s):  
Paul M. Barr ◽  
Francisco J. Hernandez-Ilizaliturri ◽  
Thomas Murante ◽  
Shannon P. Hilchey ◽  
Derick R Peterson ◽  
...  

Abstract Abstract 3719 The clinical efficacy of mTOR inhibition in MCL is limited by known resistance pathways mediated through IRS-1 and mTORC2. Simultaneous inhibition of other molecules downstream of the B cell receptor, such as PI3Kδ, may abrogate such negative feedback mechanisms. PI3Kδ inhibition using GS-1101 has demonstrated early efficacy in MCL. Taken together, the combination of mTORC1 and PI3Kδ inhibition may represent a rationale combination to test in MCL. To this end, we utilized a panel of B cell lymphoma lines including established MCL cell lines (Granta, Jeko, Mino, Rec-1, HBL-2, Z-138), cytarabine resistant MCL lines (MinoAraCR, JekoAraCR, Rec-1AraCR, HBL-2AraCR) and primary MCL cells isolated from patients. In all cell lines, dose-finding experiments using GS-1101 and the mTOR inhibitors temsirolimus and everolimus were performed in triplicates. Cell viability was determined using an Alamar Blue reduction assay. Proteins downstream of PI3K – mTOR signaling were evaluated by western blot analysis. Synergy between the agents was evaluated using Laska et al's model–free test. For in vivo studies, severe combined immunodeficiency mice were injected with 10×106 Z-138 cells on day 0. GS-9820, a PI3Kδ inhibitor optimized for murine studies, was used in lieu of GS-1101. Upon detection of tumor engraftment, animals were divided into 6 groups, each containing 5 mice; Control, GS-9820 at 10 and 20mg/kg/dose, temsirolimus at 10 and 20mg/kg/dose, and GS-9820 plus temsirolimus at 10mg/kg/dose each. GS-9820 was administered by gastric lavage twice daily on days +15 to +19 and +22 to +26. Temsirolimus was administered via tail vein injection on days +15, +17, +19, +22, +24, and +26. Tumor measurements were used to determine therapeutic activity. The initial screen of lymphoma histologic subtypes demonstrated that cell viability was reduced across Burkitt, diffuse large B cell and MCL lines exposed to GS-1101. In MCL lines, the cell viabilities observed after 48 h treatments with GS-1101 (5uM) were 80% ± 6.9, 66% ± 2.2 and 68% ± 4.7 in Granta, Jeko and Rec-1 cells respectively. No difference was observed in cytarabine resistant cells suggesting non-cross resistance with cytarabine. The activity in primary MCL cells was similar using GS-1101 (5uM) [viability range 55%-65%] while peripheral blood mononuclear cells (PBMCs) appeared less sensitive to GS-1101 [78% ± 2.4]. Both mTOR inhibitors provided moderate reductions in viability after 48 h exposures. Compared to untreated controls, the viabilities of Granta, Jeko and Rec-1 cell lines after 48 h exposures to temsirolimus (5nM) were 73% ± 1.3, 53% % ± 6.9 and 54% ± 2.0 respectively as well as 68% ± 2.9, 50% ± 7.4 and 55% ± 2.0 respectively after everolimus (5nM). Similar results were observed in primary MCL cells using temsirolimus (5nM) [range 80%-85%] while PBMCs were largely unaffected [90% ± 2.2]. The combination of GS-1101 and either mTOR inhibitor produced largely additive reductions in cell viability. Synergistic interactions were observed in Rec-1 cells for 8 dose combinations of GS-1101 (0.1–5.0uM) and either temsirolimus (1–5nM) or everolimus (1–5nM) (unadjusted p < 0.05 for all 8 combinations). Evidence of synergy was insufficient at any combination after adjustment for multiple comparisons over the 3 cell lines. Sequential administration using 24 h pretreatment with each agent was evaluated; no benefit over simultaneous administration was demonstrated. Consistent with known mechanisms of action, immunoblotting revealed decreased 4EBP1 and S6K phosphorylation with mTOR inhibition while PI3K inhibition consistently decreased Akt phosphorylation. In vivo, GS-9820 appears active in the Z-138 xenografts at early time points. Tumor size was reduced to 60% ± 5.5 of control at day 18 and 23 using either 10 or 20 mg/kg of GS-9820. Testing of GS-9820 in combination with temsirolimus in this model is ongoing. Our findings indicate that PI3Kδ inhibition using GS-1101 and GS-9820 is active in vitro and also in a MCL murine xenograft. GS-1101 in combination with mTORC1 inhibition largely produced additive in vitro anti-lymphoma effects in MCL. Ongoing work is aimed at understanding the differences in molecular events downstream of PI3K and mTOR inhibition comparing Rec-1 cells, where synergy was demonstrated, with other cell lines to provide insight into optimal therapeutic combinations and to determine in which molecularly defined subsets of MCL they may be most active. Disclosures: Johnson: Gilead Sciences: Employment. Lannutti:Gilead Sciences Inc: Employment.


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 478-478
Author(s):  
Mansi Parasramka ◽  
David A. Proia ◽  
Richard Wayne Joseph

478 Background: Resistance invariably develops in all patients with metastatic ccRCC treated with mTOR inhibitors. Previously we demonstrated that dual inhibition of Hsp90 and the mTOR pathway in lung cancer models leads to synergistic reductions in tumor growth. Herein, we tested the efficacy of ganetespib as a single agent and in combination with mTOR inhibition using in vitro and in vivoccRCC models. Methods: For the in vitro work we utilized the following seven ccRCC cell lines: Caki-1, Caki-2, A-498, A-704, 769-P, 786-O, ACHN. For the in vivo work we used A498 xenografts. In vitro, we determined the single agent EC50 of everolimus and ganetespib at 72 hours by assessing percent viability of A498 cells compared to vehicle using the MTS assay. We then performed combinations of ganetespib and everolimus at EC20, EC30, and EC50 in A498 cells. Translating these studies in vivo, we compared the combinatorial activity of ganetespib and temsirolimus to monotherapy in mice bearing A498 tumor xenografts. Results: As a single agent, all ccRCC cell lines tested were sensitive to ganetespib at nanomolar concentration (EC50 15 – 75 nm) and to everolimus at micromolar concentrations (EC50 4 – 54 mm). In vitro, the combination of ganetespib and everolimus also decreased cell viability in an additive fashion. In vivo, ganetespib and temsirolimus demonstrated comparable single agent activity at sub-MTD doses (T/C = 63 and 60, respectively). Combining ganetespib with temsirolimus improved tumor growth suppression by ~30% (T/C = 43). Conclusions: Given the broad in vitro sensitivity of ccRCC cell lines to single agent ganetespib as well as the in vivo activity of the combination of ganetespib and temsirolimus, we believe ganetespib warrants further study in ccRCC. Updated results will be presented at the conference including the in vivo activity of the combination of ganetespib and antivascular endothelial growth factor agents.


2010 ◽  
Vol 9 (1) ◽  
pp. 256 ◽  
Author(s):  
Nicolas Charette ◽  
Christine De Saeger ◽  
Valérie Lannoy ◽  
Yves Horsmans ◽  
Isabelle Leclercq ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
pp. 60-72 ◽  
Author(s):  
Julien Bollard ◽  
Céline Patte ◽  
Patrick Massoma ◽  
Isabelle Goddard ◽  
Nicolas Gadot ◽  
...  

Blood ◽  
1998 ◽  
Vol 91 (10) ◽  
pp. 3850-3861 ◽  
Author(s):  
Shigeki Nagashima ◽  
Robbie Mailliard ◽  
Yoshiro Kashii ◽  
Torsten E. Reichert ◽  
Ronald B. Herberman ◽  
...  

Abstract A variety of strategies have been attempted in the past to stably transduce natural killer (NK) cells with cytokine or other cellular genes. Here, we demonstrate the successful delivery of the interleukin-2 (IL-2) gene into two human NK cell lines, IL-2–dependent NK-92 and IL-2–independent YT, by retroviral transduction. An MuLV-based retroviral vector expressing human IL-2 andneor markers from a polycistronic message was constructed and transduced into a CRIP packaging cell line. By coincubation of NK cells with monolayers of CRIP cells or by using retrovirus-containing supernatants in a flow-through method, 10% to 20% of NK cells were stably transduced. Upon selection in the presence of increasing G418 concentrations, transduced NK cells were able to proliferate independently of IL-2 for more than 5 months and to secrete up to 5.5 ng/106 cells/24 h of IL-2. IL-2 gene-transduced NK-92 cells had an in vitro cytotoxicity against tumor targets that was significantly higher than that of parental cells and secreted interferon gamma (IFNγ) and tumor necrosis factor alpha (TNFα) in addition to IL-2. Moreover, the in vivo antitumor activity of IL-2 gene-transduced NK-92 cells against established 3-day liver metastases in mice was greater than that of parental nontransduced NK cells. Stable expression of the IL-2 transgene in NK cells improved their therapeutic potential in tumor-bearing hosts. Thus, transduced NK cells secreted sufficient quantities of bioactive IL-2 to proliferate in vitro and mediated the antitumor effects both in vitro and in vivo in the absence of exogenous IL-2. These results suggest that genetic modification of NK cells ex vivo could be useful for clinical cancer therapy in the future.


2020 ◽  
Vol 11 (10) ◽  
Author(s):  
Huanyu He ◽  
Xinmao Song ◽  
Zuozhang Yang ◽  
Yuchi Mao ◽  
Kunming Zhang ◽  
...  

Abstract Stereotactic body radiotherapy (SBRT) has emerged as a standard treatment for non-small-cell lung cancer. However, its therapeutic advantages are limited with the development of SBRT resistance. The SBRT-resistant cell lines (A549/IR and H1975/IR) were established after exposure with hypofractionated irradiation. The differential lncRNAs were screened by microarray assay, then the expression was detected in LUAD tumor tissues and cell lines by qPCR. The influence on radiation response was assessed via in vitro and in vivo assays, and autophagy levels were evaluated by western blot and transmission electron microscopy. Bioinformatics prediction and rescue experiments were used to identify the pathways underlying SBRT resistance. High expression of KCNQ1OT1 was identified in LUAD SBRT-resistant cells and tissues, positively associated with a large tumor, advanced clinical stage, and a lower response rate to concurrent therapy. KCNQ1OT1 depletion significantly resensitized A549/IR and H1975/IR cells to radiation by inhibiting autophagy, which could be attenuated by miR-372-3p knockdown. Furthermore, autophagy-related 5 (ATG5) and autophagy-related 12 (ATG12) were confirmed as direct targets of miR-372-3p. Restoration of either ATG5 or ATG12 abrogated miR-372-3p-mediated autophagy inhibition and radiosensitivity. Our data describe that KCNQ1OT1 is responsible for SBRT resistance in LUAD through induction of ATG5- and ATG12-dependent autophagy via sponging miR-372-3p, which would be a potential strategy to enhance the antitumor effects of radiotherapy in LUAD.


Oncology ◽  
1988 ◽  
Vol 45 (3) ◽  
pp. 206-209 ◽  
Author(s):  
Yuji Maeda ◽  
Tohru Hirai ◽  
Hideyuki Yamato ◽  
Noriko Kobori ◽  
Ken-ichi Matsunaga ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1653-1653
Author(s):  
Silvia Locatelli ◽  
Arianna Giacomini ◽  
Anna Guidetti ◽  
Loredana Cleris ◽  
Michele Magni ◽  
...  

Abstract Abstract 1653 Introduction: A significant proportion of Hodgkin lymphoma (HL) patients refractory to first-line chemotherapy or relapsing after autologous transplantation are not cured with currently available treatments and require new treatments. The PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in the majority of HL. These pathways can be targeted using the AKT inhibitor perifosine (Æterna Zentaris GmBH, Germany, EU), and the RAF/MEK/ERK inhibitor sorafenib (Nexavar®, Bayer, Germany, EU). We hypothesized that perifosine in combination with sorafenib might have a therapeutic activity in HL by overcoming the cytoprotective and anti-apoptotic effects of PI3K/Akt and RAF/MEK/ERK pathways. Since preclinical evidence supporting the anti-lymphoma effects of the perifosine/sorafenib combination are still lacking, the present study aimed at investigating in vitro and in vivo the activity and mechanism(s) of action of this two-drug combination. METHODS: Three HL cell lines (HD-MyZ, L-540 and HDLM-2) were used to investigate the effects of perifosine and sorafenib using in vitro assays analyzing cell growth, cell cycle distribution, gene expression profiling (GEP), and apoptosis. Western blotting (WB) experiments were performed to determine whether the two-drug combination affected MAPK and PI3K/AKT pathways as well as apoptosis. Additionally, the antitumor efficacy and mechanism of action of perifosine/sorafenib combination were investigated in vivo in nonobese diabetic/severe combined immune-deficient (NOD/SCID) mice. RESULTS: While perifosine and sorafenib as single agents exerted a limited activity against HL cells, exposure of HD-MyZ and L-540 cell lines, but not HDLM-2 cells, to perifosine/sorafenib combination resulted in synergistic cell growth inhibition (40% to 80%) and cell cycle arrest. Upon perifosine/sorafenib exposure, L-540 cell line showed significant levels of apoptosis (up to 70%, P ≤.0001) associated with severe mitochondrial dysfunction (cytochrome c, apoptosis-inducing factor release and marked conformational change of Bax accompanied by membrane translocation). Apoptosis induced by perifosine/sorafenib combination did not result in processing of caspase-8, -9, -3, or cleavage of PARP, and was not reversed by the pan-caspase inhibitor Z-VADfmk, supporting a caspase-independent mechanism of apoptosis. In responsive cell lines, WB analysis showed that anti-proliferative events were associated with dephosphorylation of MAPK and PI3K/Akt pathways. GEP analysis of HD-MyZ and L-540 cell lines, but not HDLM-2 cells indicated that perifosine/sorafenib treatment induced upregulation of genes involved in amino acid metabolism and downregulation of genes regulating cell cycle, DNA replication and cell death. In addition, in responsive cell lines, perifosine/sorafenib combination strikingly induced the expression of tribbles homologues 3 (TRIB3) both in vitro and in vivo. Silencing of TRIB3 prevented cell growth reduction induced by perifosine/sorafenib treatment. In vivo, the combined perifosine/sorafenib treatment significantly increased the median survival of NOD/SCID mice xenografted with HD-MyZ cell line as compared to controls (81 vs 45 days, P ≤.0001) as well as mice receiving perifosine alone (49 days, P ≤.03) or sorafenib alone (54 days, P ≤.007). In mice bearing subcutaneous nodules generated by HD-MyZ and L-540 cell lines but not HDLM-2 cell line, perifosine/sorafenib treatment induced significantly increased levels of apoptosis (2- to 2.5-fold, P ≤.0001) and necrosis (2- to 8-fold, P ≤.0001), as compared to controls or treatment with single agents. CONCLUSIONS: Perifosine/sorafenib combination resulted in potent anti-HL activity both in vitro and in vivo. These results warrant clinical evaluation in HL patients. Disclosures: No relevant conflicts of interest to declare.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 4582-4582
Author(s):  
Joaquim Bellmunt Molins ◽  
Lillian Werner ◽  
Marta Guix ◽  
Elizabeth Ann Guancial ◽  
Fabio Augusto Barros Schutz ◽  
...  

4582 Background: PI3KCA is frequently mutated in human cancer; however, information is scarce regarding its relevance in urothelial carcinoma (UC). We determined the prevalence of mutation and impact on clinical outcome of PI3KCA uniformly-treated patients with metastatic UC. Impact of PI3K and dual PI3K/mTOR inhibition was tested in vitro in UC cell lines with either H1047R or E545K mutation. Methods: 141 samples from invasive UC were scanned for mutations. Of those, complete clinical data was available from 85 cases treated with platinum-based combination chemotherapy for advanced or metastatic disease. DNA was extracted from FFPE material. Mutation status was determined by iPLEX sequencing and confirmed with hME sequencing. Overall survival (OS) was measured from beginning of treatment for metastatic disease to time of death or censored on the last known alive date. Cox proportional hazard model was used to assess the associations of PI3K mutational status and OS. Growth inhibitory effects of a specific PI3K inhibitor and a dual PI3K/mTOR inhibitor (both from Selleck) on UC cell lines with or without mutations were tested using MTT assays. Results: Mutations in the PI3KCA gene were observed in 14 (10%; 95% CI 6-16%) specimens. E545K was detected in all 14 specimens, though one specimen contained mutation at both E545K and H1047R. Among patients with clinical data, there was no statistically significant association between PI3KCA mutational status and OS (HR for having PI3KCA=0.49, 95% CI [0.15, 1.57], p-value 0.22). Preliminary in vitro experiments showed that cell growth was more potently inhibited with dual PI3K/mTOR inhibitors than with PI3K inhibitors. Conclusions: Mutations in the PI3KCA gene were detected in 10% of invasive UC and did not correlate with OS in patients with metastatic UC treated with platinum-based chemotherapy. PI3K inhibition in vitro impacts UC cell growth, though dual PI3K/mTOR inhibitors may have more significant effects than PI3K inhibition alone.


Sign in / Sign up

Export Citation Format

Share Document