scholarly journals Centrosomal Enrichment and Proteasomal Degradation of SYS-1/-β-catenin Requires the Microtubule Motor Dynein

2021 ◽  
Author(s):  
Joshua W Thompson ◽  
Maria F. Valdes Michel ◽  
Bryan T Phillips

The C. elegans Wnt/β-catenin Asymmetry (WβA) pathway utilizes asymmetric regulation of SYS-1/β-catenin and POP-1/TCF coactivators. This differentially regulates gene expression during cell fate decisions, specifically by asymmetric localization of determinants in mother cells to produce daughters biased towards their appropriate cell fate at birth. Despite the induction of asymmetry, β-catenin localizes symmetrically to mitotic centrosomes in both mammals and C. elegans. Due to the mitosis-specific mobility of centrosomal SYS-1 and 'traffic jam' like enrichment of SYS-1 at kinetochore microtubules when SYS-1 centrosomal loading is disrupted, we investigated active trafficking in SYS-1 centrosomal localization. Here, we demonstrate that trafficking by microtubule motor dynein is required to maintain SYS-1 centrosomal enrichment, by dynein RNAi-mediated decreases in SYS-1 centrosomal enrichment and by temperature-sensitive allele of the dynein heavy chain. Conversely, we observe that depletion of microtubules by Nocodazole treatment or RNAi of putative dynein-proteasome adapter ECPS-1 exhibits increased centrosomal enrichment of SYS-1. Moreover, disruptions to SYS-1 or negative regulator microtubule trafficking are sufficient to significantly exacerbate SYS-1 dependent cell fate misspecifications. We propose retrograde microtubule-mediated trafficking enables SYS-1 and negative regulators to enrich at centrosomes, enhancing their interaction and perhaps implicating the centrosome as a mitotic sink for proteins targeted for degradation.

2015 ◽  
Vol 309 (8) ◽  
pp. C511-C521 ◽  
Author(s):  
Laura Novellasdemunt ◽  
Pedro Antas ◽  
Vivian S. W. Li

The evolutionarily conserved Wnt signaling pathway plays essential roles during embryonic development and tissue homeostasis. Notably, comprehensive genetic studies in Drosophila and mice in the past decades have demonstrated the crucial role of Wnt signaling in intestinal stem cell maintenance by regulating proliferation, differentiation, and cell-fate decisions. Wnt signaling has also been implicated in a variety of cancers and other diseases. Loss of the Wnt pathway negative regulator adenomatous polyposis coli (APC) is the hallmark of human colorectal cancers (CRC). Recent advances in high-throughput sequencing further reveal many novel recurrent Wnt pathway mutations in addition to the well-characterized APC and β-catenin mutations in CRC. Despite attractive strategies to develop drugs for Wnt signaling, major hurdles in therapeutic intervention of the pathway persist. Here we discuss the Wnt-activating mechanisms in CRC and review the current advances and challenges in drug discovery.


2015 ◽  
Vol 5 (3) ◽  
pp. 353-359 ◽  
Author(s):  
Yunting Chen ◽  
Iva Greenwald

Abstract Notch is a receptor that mediates cell–cell interactions that specify binary cell fate decisions in development and tissue homeostasis. Inappropriate Notch signaling is associated with cancer, and mutations in Notch pathway components have been associated with developmental diseases and syndromes. In Caenorhabditis elegans, suppressors of phenotypes associated with constitutively active LIN-12/Notch have identified many conserved core components and direct or indirect modulators. Here, we molecularly identify sel(ar584), originally isolated as a suppressor of a constitutively active allele of lin-12. We show that sel(ar584) is an allele of hecd-1, the ortholog of human HECDT1, a ubiquitin ligase that has been implicated in several different mammalian developmental events. We studied interactions of hecd-1 with lin-12 in the somatic gonad and with the other C. elegans Notch gene, glp-1, in the germ line. We found that hecd-1 acts as a positive modulator of lin-12/Notch activity in a somatic gonad context—the original basis for its isolation—but acts autonomously as a negative modulator of glp-1/Notch activity in the germ line. As the yeast ortholog of HECD-1, Ufd4p, has been shown to function in quality control, and C. elegans  HECD-1 has been shown to affect mitochondrial maintenance, we propose that the different genetic interactions between hecd-1 and Notch genes we observed in different cell contexts may reflect differences in quality control regulatory mechanisms or in cellular metabolism.


Development ◽  
2002 ◽  
Vol 129 (7) ◽  
pp. 1763-1774 ◽  
Author(s):  
Scott Cameron ◽  
Scott G. Clark ◽  
Joan B. McDermott ◽  
Eric Aamodt ◽  
H. Robert Horvitz

During Caenorhabditis elegans development, the patterns of cell divisions, cell fates and programmed cell deaths are reproducible from animal to animal. In a search for mutants with abnormal patterns of programmed cell deaths in the ventral nerve cord, we identified mutations in the gene pag-3, which encodes a zinc-finger transcription factor similar to the mammalian Gfi-1 and Drosophila Senseless proteins. In pag-3 mutants, specific neuroblasts express the pattern of divisions normally associated with their mother cells, producing with each reiteration an abnormal anterior daughter neuroblast and an extra posterior daughter cell that either terminally differentiates or undergoes programmed cell death, which accounts for the extra cell corpses seen in pag-3 mutants. In addition, some neurons do not adopt their normal fates in pag-3 mutants. The phenotype of pag-3 mutants and the expression pattern of the PAG-3 protein suggest that in some lineages pag-3 couples the determination of neuroblast cell fate to subsequent neuronal differentiation. We propose that pag-3 counterparts in other organisms determine blast cell identity and for this reason may lead to cell lineage defects and cell proliferation when mutated.


2022 ◽  
Author(s):  
Kimberly N. Bekas ◽  
Bryan T. Phillips

Asymmetric cell division (ACD) is a fundamental mechanism of developmental cell fate specification and adult tissue homeostasis. In C. elegans, the Wnt/beta-catenin asymmetry (WβA) pathway regulates ACDs throughout embryonic and larval development. Under control of Wnt ligand-induced polarity, the transcription factor TCF/POP-1 functions with the coactivator beta-catenin/SYS-1 to activate gene expression in the signaled cell or, in absence of the coactivator, to repress Wnt target genes in the nascent unsignaled daughter cell. To date, a broad investigation of Groucho function in WβA is lacking and the function of the short Groucho AES homolog, lsy-22 has only been evaluated in C. elegans neuronal cell fate decisions. Further, there is conflicting evidence showing TCF utilizing Groucho-mediated repression may be either aided or repressed by addition of AES subfamily of Groucho proteins. Here we demonstrate a genetic interaction between Groucho repressors and TCF/POP-1 in ACDs in the somatic gonad, the seam hypodermal stem cell lineage and the early embryo. Specifically, in the somatic gonad lineage, the signaled cell fate increases after individual and double Groucho loss of function, representing the first demonstration of Groucho function in wild-type WβA ACD. Further, WβA target gene misexpression occurs at a higher rate than DTC fate changes, suggesting derepression generates an intermediate cell fate. In seam cell ACD, loss of Groucho unc-37 or Groucho-like lsy-22 in a pop-1(RNAi) hypomorphic background enhances a pop-1 seam cell expansion and target gene misregulation. Moreover, while POP-1 depletion in lsy-22 null mutants yielded an expected increase in seam cells we observed a surprising seam cell decrease in the unc-37 null subjected to POP-1 depletion. This phenotype may be due to UNC-37 regulation of pop-1 expression in this tissue since we find misregulation of POP-1 in unc-37 mutants. Lastly, Groucho functions in embryonic endoderm development since we observe ectopic endoderm target gene expression in lsy-22(ot244) heterozygotes and unc-37(tm4649) heterozygotes subjected to intermediate levels of hda-1(RNAi). Together, these data indicate Groucho repressor modulation of cell fate via regulation of POP-1/TCF repression is widespread in asymmetric cell fate decisions and suggests a novel role of LSY-22 as a bona fide TCF repressor. As AES Grouchos are well-conserved, our model of combinatorial TCF repression by both Gro/TLE and AES warrants further investigation. 


2019 ◽  
Author(s):  
Meghan E. Costello ◽  
Lisa N. Petrella

AbstractTissue-specific establishment of repressive chromatin through creation of compact chromatin domains during development is necessary to ensure proper gene expression and cell fate. C. elegans synMuv B proteins are important for the soma/germline fate decision and mutants demonstrate ectopic germline gene expression in somatic tissue, especially at high temperature. We show that C. elegans synMuv B proteins regulate developmental chromatin compaction and that timing of chromatin compaction is temperature sensitive in both wild-type and synMuv B mutants. Chromatin compaction in mutants is delayed into developmental time-periods when zygotic gene expression is upregulated and demonstrates an anterior-to-posterior pattern. Loss of this patterned compaction coincides with the developmental time-period of ectopic germline gene expression that leads to a developmental arrest in synMuv B mutants. Thus, chromatin organization throughout development is regulated both spatially and temporally by synMuv B proteins to establish repressive chromatin in a tissue-specific manner to ensure proper gene expression.


Genetics ◽  
1999 ◽  
Vol 152 (2) ◽  
pp. 567-576 ◽  
Author(s):  
M Cornell ◽  
D A P Evans ◽  
R Mann ◽  
M Fostier ◽  
M Flasza ◽  
...  

Abstract During development, the Notch receptor regulates many cell fate decisions by a signaling pathway that has been conserved during evolution. One positive regulator of Notch is Deltex, a cytoplasmic, zinc finger domain protein, which binds to the intracellular domain of Notch. Phenotypes resulting from mutations in deltex resemble loss-of-function Notch phenotypes and are suppressed by the mutation Suppressor of deltex [Su(dx)]. Homozygous Su(dx) mutations result in wing-vein phenotypes and interact genetically with Notch pathway genes. We have previously defined Su(dx) genetically as a negative regulator of Notch signaling. Here we present the molecular identification of the Su(dx) gene product. Su(dx) belongs to a family of E3 ubiquitin ligase proteins containing membrane-targeting C2 domains and WW domains that mediate protein-protein interactions through recognition of proline-rich peptide sequences. We have identified a seven-codon deletion in a Su(dx) mutant allele and we show that expression of Su(dx) cDNA rescues Su(dx) mutant phenotypes. Overexpression of Su(dx) also results in ectopic vein differentiation, wing margin loss, and wing growth phenotypes and enhances the phenotypes of loss-of-function mutations in Notch, evidence that supports the conclusion that Su(dx) has a role in the downregulation of Notch signaling.


2018 ◽  
Author(s):  
Jonathon M. Carthy ◽  
Marilia Ioannou ◽  
Vasso Episkopou

AbstractHow cells assess levels of signaling and select to transcribe different target genes depending on the levels of activated effectors remains elusive. High NODAL-signalling levels specify anterior/head, lower specify posterior, and complete loss abolishes anterior-posterior patterning in the mammalian embryo. Here we show that cells assess NODAL-activated SMAD2 and SMAD3 (SMAD2/3) effector-levels by complex formation and pairing each effector with the co-repressor SNON, which is present in the cell before signaling. These complexes enable the E3-ubiquitin ligase Arkadia (RNF111) to degrade SNON. High SMAD2/3 levels can saturate and remove SNON, leading to derepression and activation of a subset of targets (high targets) that are highly susceptible to SNON repression. However, low SMAD2/3 levels can only reduce SNON preventing derepression/activation of high targets. Arkadia degrades SNON transiently only upon signaling exposure, leading to dynamic signaling-responses, which most likely initiate level-specific cell-fate decisions. Arkadia-null mouse embryos and Embryonic Stem Cells (ESC) cannot develop anterior tissues and head. However, SnoN/Arkadia, double-null embryos and ESCs are rescued confirming that Arkadia removes SNON, to achieve level-dependent cell-fatesOne Sentence SummarySignaling intensity induces equivalent degradation of a transcriptional repressor leading to level-dependent responses.


Development ◽  
2001 ◽  
Vol 128 (10) ◽  
pp. 1793-1804 ◽  
Author(s):  
S. Alper ◽  
C. Kenyon

Hox genes control the choice of cell fates along the anteroposterior (AP) body axis of many organisms. In C. elegans, two Hox genes, lin-39 and mab-5, control the cell fusion decision of the 12 ventrally located Pn.p cells. Specific Pn.p cells fuse with an epidermal syncytium, hyp7, in a sexually dimorphic pattern. In hermaphrodites, Pn.p cells in the mid-body region remain unfused whereas in males, Pn.p cells adopt an alternating pattern of syncytial and unfused fates. The complexity of these fusion patterns arises because the activities of these two Hox proteins are regulated in a sex-specific manner. MAB-5 activity is inhibited in hermaphrodite Pn.p cells and thus MAB-5 normally only affects the male Pn.p fusion pattern. Here we identify a gene, ref-1, that regulates the hermaphrodite Pn.p cell fusion pattern largely by regulating MAB-5 activity in these cells. Mutation of ref-1 also affects the fate of other epidermal cells in distinct AP body regions. ref-1 encodes a protein with two basic helix-loop-helix domains distantly related to those of the hairy/Enhancer of split family. ref-1, and another hairy homolog, lin-22, regulate similar cell fate decisions in different body regions along the C. elegans AP body axis.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Achim Werner ◽  
Regina Baur ◽  
Nia Teerikorpi ◽  
Deniz U Kaya ◽  
Michael Rape

Metazoan development depends on tightly regulated gene expression programs that instruct progenitor cells to adopt specialized fates. Recent work found that posttranslational modifications, such as monoubiquitylation, can determine cell fate also independently of effects on transcription, yet how monoubiquitylation is implemented during development is poorly understood. Here, we have identified a regulatory circuit that controls monoubiquitylation-dependent neural crest specification by the E3 ligase CUL3 and its substrate adaptor KBTBD8. We found that CUL3KBTBD8 monoubiquitylates its essential targets only after these have been phosphorylated in multiple motifs by CK2, a kinase whose levels gradually increase during embryogenesis. Its dependency on multisite phosphorylation allows CUL3KBTBD8 to convert the slow rise in embryonic CK2 into decisive recognition of ubiquitylation substrates, which in turn is essential for neural crest specification. We conclude that multisite dependency of an E3 ligase provides a powerful mechanism for switch-like cell fate transitions controlled by monoubiquitylation.


Development ◽  
1995 ◽  
Vol 121 (12) ◽  
pp. 4275-4282 ◽  
Author(s):  
K. Fitzgerald ◽  
I. Greenwald

Ligands of the Delta/Serrate/lag-2 (DSL) family and their receptors, members of the lin-12/Notch family, mediate cell-cell interactions that specify cell fate in invertebrates and vertebrates. In C. elegans, two DSL genes, lag-2 and apx-1, influence different cell fate decisions during development. Here we show that APX-1 can fully substitute for LAG-2 when expressed under the control of lag-2 regulatory sequences. In addition, we demonstrate that truncated forms lacking the transmembrane and intracellular domains of both LAG-2 and APX-1 can also substitute for endogenous lag-2 activity. Moreover, we provide evidence that these truncated forms are secreted and able to activate LIN-12 and GLP-1 ectopically. Finally, we show that expression of a secreted DSL domain alone may enhance endogenous LAG-2 signalling. Our data suggest ways that activated forms of DSL ligands in other systems may be created.


Sign in / Sign up

Export Citation Format

Share Document