scholarly journals Exophers are components of mammalian cell neurobiology in health and disease

2021 ◽  
Author(s):  
Ibrar Siddique ◽  
Jing Di ◽  
Christopher K. Williams ◽  
Daniela Markovic ◽  
Harry V. Vinters ◽  
...  

AbstractMaintenance of cellular homeostasis is critically important for the survival of cells and organisms. Degradation and recycling of biomolecules and whole organelles is an essential mechanism for maintaining cellular homeostasis. The main systems responsible for these processes are the ubiquitin-proteasome system and autophagy-lysosome pathway. Another mechanism was reported in c. elegans—formation of large, membrane-enclosed projections called “exophers,” into which cells direct debris and toxic protein aggregates1. Exophers were shown to act as large, temporary disposal compartments that disconnected from the cells within several hours. Here, we report the discovery of exophers in the mammalian brain, including the brains of humans and mice. Similar to those described in nematodes, the mammalian exophers appear to emanate from the cell body, initially connected by a nanotube, and eventually disconnect. Rare, innate exophers were found in healthy human brain and primary neurons from wild-type mice, presumably mediating transfer of large cargo between cells. The number of exophers increased as an adaptive response under proteostatic stress, e.g., in Alzheimer’s disease brain or in primary neurons from two tauopathy mouse models, where the exophers likely facilitated expulsion of proteotoxic material. Our findings suggest that exopherogenesis is a rare, innate house-keeping process that is elevated adaptively in response to proteostatic pressure and is a conserved mechanism from nematodes to humans.

2020 ◽  
Author(s):  
Ganapathi Kandasamy ◽  
Ashis Kumar Pradhan ◽  
R Palanimurugan

AbstractDegradation of short-lived and abnormal proteins are essential for normal cellular homeostasis. In eukaryotes, such unstable cellular proteins are selectively degraded by the ubiquitin proteasome system (UPS). Furthermore, abnormalities in protein degradation by the UPS have been linked to several human diseases. Ccr4 protein is a known component of the Ccr4-Not complex, which has established roles in transcription, mRNA de-adenylation and RNA degradation etc. Excitingly in this study, we show that Ccr4 protein has a novel function as a shuttle factor that promotes ubiquitin-dependent degradation of short-lived proteins by the 26S proteasome. Using a substrate of the well-studied ubiquitin fusion degradation (UFD) pathway, we found that its UPS-mediated degradation was severely impaired upon deletion of CCR4 in Saccharomyces cerevisiae. Additionally, we show that Ccr4 binds to cellular ubiquitin conjugates and the proteasome. In contrast to Ccr4, most other subunits of the Ccr4-Not complex proteins are dispensable for UFD substrate degradation. From our findings we conclude that Ccr4 functions in the UPS as a shuttle factor targeting ubiquitylated substrates for proteasomal degradation.


Reproduction ◽  
2012 ◽  
Vol 143 (3) ◽  
pp. 271-279 ◽  
Author(s):  
Sayaka Koyanagi ◽  
Hiroko Hamasaki ◽  
Satoshi Sekiguchi ◽  
Kenshiro Hara ◽  
Yoshiyuki Ishii ◽  
...  

Maternal proteins are rapidly degraded by the ubiquitin–proteasome system during oocyte maturation in mice. Ubiquitin C-terminal hydrolase L1 (UCHL1) is highly and specifically expressed in mouse ova and is involved in the polyspermy block. However, the role of UCHL1 in the underlying mechanism of polyspermy block is poorly understood. To address this issue, we performed a comprehensive proteomic analysis to identify maternal proteins that were relevant to the role of UCHL1 in mouse ova using UCHL1-deficientgad. Furthermore, we assessed morphological features ingadmouse ova using transmission electron microscopy. NACHT, LRR, and PYD domain-containing (NALP) family proteins and endoplasmic reticulum (ER) chaperones were identified by proteomic analysis. We also found that the ‘maternal antigen that embryos require’ (NLRP5 (MATER)) protein level increased significantly ingadmouse ova compared with that in wild-type mice. In an ultrastructural study,gadmouse ova contained less ER in the cortex than in wild-type mice. These results provide new insights into the role of UCHL1 in the mechanism of polyspermy block in mouse ova.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

Apoptosis is a prominent metazoan cell death form. Yet, mutations in apoptosis regulators cause only minor defects in vertebrate development, suggesting that another developmental cell death mechanism exists. While some non-apoptotic programs have been molecularly characterized, none appear to control developmental cell culling. Linker-cell-type death (LCD) is a morphologically conserved non-apoptotic cell death process operating in Caenorhabditis elegans and vertebrate development, and is therefore a compelling candidate process complementing apoptosis. However, the details of LCD execution are not known. Here we delineate a molecular-genetic pathway governing LCD in C. elegans. Redundant activities of antagonistic Wnt signals, a temporal control pathway, and mitogen-activated protein kinase kinase signaling control heat shock factor 1 (HSF-1), a conserved stress-activated transcription factor. Rather than protecting cells, HSF-1 promotes their demise by activating components of the ubiquitin proteasome system, including the E2 ligase LET-70/UBE2D2 functioning with E3 components CUL-3, RBX-1, BTBD-2, and SIAH-1. Our studies uncover design similarities between LCD and developmental apoptosis, and provide testable predictions for analyzing LCD in vertebrates.


2006 ◽  
Vol 17 (3) ◽  
pp. 1075-1084 ◽  
Author(s):  
Heike Laser ◽  
Laura Conforti ◽  
Giacomo Morreale ◽  
Till G.M. Mack ◽  
Molly Heyer ◽  
...  

Slow Wallerian degeneration (WldS) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD+ synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with WldS targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. WldS lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD+ synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of WldS protein influence the intranuclear location of both ubiquitin proteasome and NAD+ synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.


Genetics ◽  
2021 ◽  
Author(s):  
Evgeny E Bezsonov ◽  
Herman K Edskes ◽  
Reed B Wickner

Abstract [URE3] is an amyloid-based prion of Ure2p, a negative regulator of poor nitrogen source catabolism in Saccharomyces cerevisiae. Overproduced Btn2p or its paralog Cur1p, in processes requiring Hsp42, cure the [URE3] prion. Btn2p cures by collecting Ure2p amyloid filaments at one place in the cell. We find that rpl4aΔ, rpl21aΔ, rpl21bΔ, rpl11bΔ and rpl16bΔ (large ribosomal subunit proteins) or ubr2Δ (ubiquitin ligase targeting Rpn4p, an activator of proteasome genes) reduce curing by overproduced Btn2p or Cur1p. Impaired curing in ubr2Δ or rpl21bΔ is restored by an rpn4Δ mutation. No effect of rps14aΔ or rps30bΔ on curing was observed, indicating that 60S subunit deficiency specifically impairs curing. Levels of Hsp42p, Sis1p or Btn3p are unchanged in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Overproduction of Cur1p or Btn2p was enhanced in rpn4Δ and hsp42Δ mutants, lower in ubr2Δ strains, and restored to above wild type levels in rpn4Δ ubr2Δ strains. As in the wild-type, Ure2N-GFP colocalizes with Btn2-RFP in rpl4aΔ, rpl21bΔ or ubr2Δ strains, but not in hsp42Δ. Btn2p/Cur1p overproduction cures [URE3] variants with low seed number, but seed number is not increased in rpl4aΔ, rpl21bΔ or ubr2Δ mutants. Knockouts of genes required for the protein sorting function of Btn2p did not affect curing of [URE3], nor did inactivation of the Hsp104 prion-curing activity. Overactivity of the ubiquitin/proteasome system, resulting from 60S subunit deficiency or ubr2Δ, may impair Cur1p and Btn2p curing of [URE3] by degrading Cur1p, Btn2p or another component of these curing systems.


2019 ◽  
Author(s):  
Shireen A. Sarraf ◽  
Hetal V. Shah ◽  
Gil Kanfer ◽  
Michael E. Ward ◽  
Richard J. Youle

AbstractMisfolded protein aggregates can disrupt cellular homeostasis and cause toxicity, a hallmark of numerous neurodegenerative diseases. Protein quality control by the ubiquitin proteasome system (UPS) and autophagy is vital for clearance of aggregates and maintenance of cellular homeostasis1. Autophagy receptor proteins bridge the interaction between ubiquitinated proteins and the autophagy machinery allowing selective elimination of cargo2. Aggrephagy is critical to protein quality control, but how aggregates are recognized and targeted for degradation is not well understood. Here we examine the requirements for 5 autophagy receptor proteins: OPTN, NBR1, p62, NDP52, and TAX1BP1 in proteotoxic stress-induced aggregate clearance. Endogenous TAX1BP1 is both recruited to and required for the clearance of stress-induced aggregates while overexpression of TAX1BP1 increases aggregate clearance through autophagy. Furthermore, TAX1BP1 depletion sensitizes cells to proteotoxic stress and Huntington’s disease-linked polyQ proteins, whereas TAX1BP1 overexpression clears cells of polyQ protein aggregates by autophagy. We propose a broad role for TAX1BP1 in the clearance of cytotoxic proteins, thus identifying a new mode of clearance of protein inclusions.


2017 ◽  
Author(s):  
Chen Liu ◽  
Simon Stael ◽  
Kris Gevaert ◽  
Frank Van Breusegem ◽  
Peter V Bozhkov ◽  
...  

AbstractDigestive proteolysis executed by the proteasome plays an important role in plant development. Yet, the role of limited proteolysis in this process is still obscured due to the absence of studies. Previously, we showed that limited proteolysis by the caspase-related protease separase (EXTRA SPINDLE POLES [ESP]) modulates development in plants through the cleavage of unknown substrates. Here we used a modified version of the positional proteomics method COmbined FRActional DIagonal Chromatography (COFRADIC) to survey the proteolytic landscape of wild-type and separase mutant RADIALLY SWOLLEN 4 (rsw4) root tip cells, as an attempt to identify targets of separase. We have discovered that proteins involved in the establishment of pH homeostasis and sensing, and lipid signalling in wild-type cells, suggesting novel potential roles for separase. We also observed significant accumulation of the protease PRX34 in rsw4 which negatively impacts growth. Furthermore, we observed an increased acetylation of N-termini of rsw4 proteins which usually comprise degrons identified by the ubiquitin-proteasome system, suggesting that separase intersects with additional proteolytic networks. Our results hint to potential pathways by which separase could regulate development suggesting also novel proteolytic functions.


2016 ◽  
Author(s):  
Maxime J Kinet ◽  
Jennifer A Malin ◽  
Mary C Abraham ◽  
Elyse S Blum ◽  
Melanie R Silverman ◽  
...  

2013 ◽  
Vol 47 (2) ◽  
pp. 790-810 ◽  
Author(s):  
Laura Campello ◽  
Julián Esteve-Rudd ◽  
Nicolás Cuenca ◽  
José Martín-Nieto

2021 ◽  
Author(s):  
Jinhyeob Ryu ◽  
Ryota Otsubo ◽  
Hiroshi Ashida ◽  
Tamako Iida ◽  
Akio Abe ◽  
...  

SummaryTranslocated intimin receptor (Tir) is an essential bacterial factor for enteropathogenic Escherichia coli (EPEC) to establish Tir-intimin interaction-mediated adherence to the epithelial cell and to form actin pedestal structures beneath the adherent bacteria. However, it remains unclear how the host cells eliminate Tir protein after infection. Here we show that intracellular translocated Tir is degraded via the host ubiquitin- proteasome system. We found that host CBL-C, an E3 ubiquitin-protein ligase, bound to and ubiquitinated the 454 tyrosine-phosphorylated Tir protein. Tir ubiquitination leads to proteasome-dependent degradation and attenuated EPEC colonization of the epithelial cell. Using Citrobacter rodentium, a mouse model for EPEC, we demonstrated that infection with C. rodentium mutant expressing a tyrosine- phenylalanine-substituted Tir (CBL-C resistant) showed increased bacterial loads in the colon and lethality compared with infection with C. rodentium expressing wild-type Tir. These results indicate that CBL-C is a critical host defense factor that determines the fate of cytosolic Tir and terminates bacterial colonization.Graphical Abstracts


Sign in / Sign up

Export Citation Format

Share Document