scholarly journals Aneuploidy influences the gene expression profiles in Saccharomyces pastorianus group I and II strains during fermentation.

2021 ◽  
Author(s):  
Roberto de la Cerda ◽  
Karsten Hookamp ◽  
Fiona Roche ◽  
Georgia Thompson ◽  
Soukaina Timouma ◽  
...  

The lager yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and are divided into two broad groups, Group I and II. The two groups evolved from at least one common hybridisation event but have subsequently diverged with Group I strains losing many S. cerevisiae chromosomes while the Group II strains retain both sub-genomes. The complex genomes, containing orthologous alleles from the parental chromosomes, pose interesting questions regarding gene regulation and its impact on the fermentation properties of the strains. Superimposed on the presence of orthologous alleles are complexities of gene dosage due to the aneuploid nature of the genomes. We examined the contribution of the S. cerevisiae and S. eubayanus alleles to the gene expression patterns of Group I and II strains during fermentation. We show that the relative expression of S. cerevisiae and S. eubayanus orthologues is positively correlated with gene copy number. Despite the reduced S. cerevisiae content in the Group I strain, S. cerevisiae orthologues contribute to biochemical pathways upregulated during fermentation which may explain the retention of specific chromosomes in the strain. Conversely, S. eubayanus genes are significantly overrepresented in the upregulated gene pool in the Group II strain. Comparison of the transcription profiles of Group I and II strains during fermentation identified both common and unique gene expression patterns, with gene copy number being a dominant contributory factor. Thus, the aneuploid genomes create complex patterns of gene expression during fermentation with gene dosage playing a crucial role both within and between strains.

2003 ◽  
Vol 163 (6) ◽  
pp. 2383-2395 ◽  
Author(s):  
Sabine C. Linn ◽  
Rob B. West ◽  
Jonathan R. Pollack ◽  
Shirley Zhu ◽  
Tina Hernandez-Boussard ◽  
...  

2016 ◽  
Author(s):  
Rebekah L. Rogers ◽  
Ling Shao ◽  
Kevin R. Thornton

AbstractOne common hypothesis to explain the impacts of tandem duplications is that whole gene duplications commonly produce additive changes in gene expression due to copy number changes. Here, we use genome wide RNA-seq data from a population sample of Drosophila yakuba to test this ‘gene dosage’ hypothesis. We observe little evidence of expression changes in response to whole transcript duplication capturing 5ʹ and 3ʹ UTRs. Among whole gene duplications, we observe evidence that dosage sharing across copies is likely to be common. The lack of expression changes after whole gene duplication suggests that the majority of genes are subject to tight regulatory control and therefore not sensitive to changes in gene copy number. Rather, we observe changes in expression level due to both shuffling of regulatory elements and the creation of chimeric structures via tandem duplication. Additionally, we observe 30 de novo gene structures arising from tandem duplications, 23 of which form with expression in the testes. Thus, the value of tandem duplications is likely to be more intricate than simple changes in gene dosage. The common regulatory effects from chimeric gene formation after tandem duplication may explain their contribution to genome evolution.Author SummaryThe enclosed work shows that whole gene duplications rarely affect gene expression, in contrast to widely held views that the adaptive value of duplicate genes is related to additive changes in gene expression due to gene copy number. We further explain how tandem duplications that create shuffled gene structures can force upregulation of gene sequences, de novo gene creation, and multifold changes in transcript levels.These results show that tandem duplications can produce new genes that are a source of immediate novelty associated with more extreme expression changes than previously suggested by theory. Further, these gene expression changes are a potential source of both beneficial and pathogenic mutations, immediately relevant to clinical and medical genetics in humans and other metazoans.


2010 ◽  
Vol 28 (13) ◽  
pp. 2174-2180 ◽  
Author(s):  
Rafal Dziadziuszko ◽  
Daniel T. Merrick ◽  
Samir E. Witta ◽  
Adelita D. Mendoza ◽  
Barbara Szostakiewicz ◽  
...  

PurposeThe purpose of this study was to characterize insulin-like growth factor-1 receptor (IGF1R) protein expression, mRNA expression, and gene copy number in surgically resected non–small-cell lung cancers (NSCLC) in relation to epidermal growth factor receptor (EGFR) protein expression, patient characteristics, and prognosis.Patients and MethodsOne hundred eighty-nine patients with NSCLC who underwent curative pulmonary resection were studied (median follow-up, 5.3 years). IGF1R protein expression was evaluated by immunohistochemistry (IHC) with two anti-IGF1R antibodies (n = 179). EGFR protein expression was assessed with PharmDx kit. IGF1R gene expression was evaluated using quantitative reverse transcription polymerase chain reaction (qRT-PCR) from 114 corresponding fresh-frozen samples. IGF1R gene copy number was assessed by fluorescent in situ hybridization using customized probes (n = 181).ResultsIGF1R IHC score was higher in squamous cell carcinomas versus other histologies (P < .001) and associated with stage (P = .03) but not survival (P = .46). IGF1R and EGFR protein expression showed significant correlation (r = 0.30; P < .001). IGF1R gene expression by qRT-PCR was higher in squamous cell versus other histologies (P = .006) and did not associate with other clinical features nor survival (P = .73). Employing criteria previously established for EGFR copy number, patients with IGF1R amplification/high polysomy (n = 48; 27%) had 3-year survival of 58%, patients with low polysomy (n = 87; 48%) had 3-year survival of 47% and patients with trisomy/disomy (n = 46; 25%) had 3-year survival of 35%, respectively (P = .024). Prognostic value of high IGF1R gene copy number was confirmed in multivariate analysis.ConclusionIGF1R protein expression is higher in squamous cell versus other histologies and correlates with EGFR expression. IGF1R protein and gene expression does not associate with survival, whereas high IGF1R gene copy number harbors positive prognostic value.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 327 ◽  
Author(s):  
Qiang Zhang ◽  
Lan Shen ◽  
Deyong Ren ◽  
Jiang Hu ◽  
Li Zhu ◽  
...  

The chloroplast RNA splicing and ribosome maturation (CRM) domain-containing proteins regulate the expression of chloroplast or mitochondrial genes that influence plant growth and development. Although 14 CRM domain proteins have previously been identified in rice, there are few studies of these gene expression patterns in various tissues and under abiotic stress. In our study, we found that 14 CRM domain-containing proteins have a conservative motif1. Under salt stress, the expression levels of 14 CRM genes were downregulated. However, under drought and cold stress, the expression level of some CRM genes was increased. The analysis of gene expression patterns showed that 14 CRM genes were expressed in all tissues but especially highly expressed in leaves. In addition, we analyzed the functions of OsCFM2 and found that this protein influences chloroplast development by regulating the splicing of a group I and five group II introns. Our study provides information for the function analysis of CRM domain-containing proteins in rice.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e17490 ◽  
Author(s):  
Zhifu Sun ◽  
Yan W. Asmann ◽  
Krishna R. Kalari ◽  
Brian Bot ◽  
Jeanette E. Eckel-Passow ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1538-1538
Author(s):  
Wee-Joo Chng ◽  
Scott Van Wier ◽  
Gregory Ahmann ◽  
Tammy Price-Troska ◽  
Kim Henderson ◽  
...  

Abstract Hyperdiploid MM (H-MM), characterized by recurrent trisomies constitute about 50% of MM, yet very little is known about its pathogenesis and oncogenic mechanisms. Studies in leukemia and solid tumors have shown gene dosage effect of aneuploidy on gene expression. To determine the possible gene dosage effect and deregulated cellular program in H-MM we undertook a gene expression study of CD138-enriched plasma-cell RNA from 53 hyperdiploid and 37 non-hyperdiploid MM (NH-MM) patients using the Affymetrix U133A chip (Affymetrix, Santa Clara, CA). Gene expression data was analyzed using GeneSpring 7 (Agilent Technologies, Palo Alto, CA). Genes differentially expressed between H-MM and NH-MM were obtained by t-test (p&lt;0.01). The majority of the differentially expressed genes (57%) were under-expressed in H-MM. Genes located on the commonly trisomic chromosomes were mostly (but not always) over-expressed in H-MM and constitute 76% of over-expressed genes. Chromosome 1 contained the most differentially expressed genes (17%) followed by chromosome 12 (9%), and 19 (8%). To examine the relationship of gene copy number to gene expression, we examined the expression of genes on chromosomes 9 and 15 in subjects with 2 copies (15 normal control and 20 NH-MM) and 3 copies (12 H-MM) of each chromosome as detected by interphase FISH. We then derived a ratio of the mean expression of each gene on these chromosomes between patients with 3 copies and 2 copies of the chromosome. If a simple relationship exists between gene expression and gene copy number, one would expect the ratio of expression of most genes on these two chromosomes to be about 1.5 in H-MM compared to NH-MM. However, many genes have ratios either higher than 2 or lower than 0.5. Furthermore, when the heterogeneity of cells with underlying trisomies is taken into consideration by correcting the ratio for the number of cells with trisomies, the actual ratio is always lower than the expected ratio. When the expression of genes on a chromosome was compressed to a median value, this value was always higher in the trisomic chromosomes for H-MM compared to NH-MM. The data suggests that although gene dosage influence gene expression, the relationship is complex and some genes are more gene dosage dependent than others. Amongst the differentially expressed genes with known function, 33% are involved in mRNA translation/protein synthesis. Of note, 37 of the top 100 differentially expressed genes are involved in these processes. In particular, 60 ribosomal protein (RP) genes are significantly (p&lt;0.05) upregulated in H-MM. This signature in H-MM is not associated with increase proliferation as measured by PCLI. This predominant signature suggests that deregulated protein synthesis may be important for the biology of H-MM. Many of these RPs are involved in the synthesis of product of oncogenic pathways (e.g. MYC, NF-KB pathways) and may mediate the growth and survival of tumor cells. It is therefore possible that these tumor cells may be sensitive to the disruption of mRNA translation/protein synthesis. Targeting the mTOR pathway with rapamycin may therefore be useful for treatment of H-MM.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 803-803
Author(s):  
Fabrice Jardin ◽  
Jean-Philippe Jais ◽  
Thierry Jo Molina ◽  
Francoise Parmentier ◽  
Jean-Michel Picquenot ◽  
...  

Abstract Genomic gains and losses play a crucial role in the development and progression of DLBCL. Some gains or losses are associated with particular morphologic or clinical manifestations and correlate with the “germinal center B-cell like” (GCB)/non-GCB phenotype, as defined by gene expression profiles (GEP). We previously developed a reliable and routinely single applicable PCR assay, which provided information regarding gain/loss of relevant genes, and prognosis in DLBCL, termed QMPSF (Multiplex PCR of Short Fluorescent Fragments). Here, we combined GEP and QMPSF approaches to delineate molecular pathways related to recurrent gene copy number abnormalities (GCNA) and assess their prognosis value in patients treated by R-CHOP. For this purpose a series of 69 newly diagnosed DLBCL, included in the 98–5 GELA trial with available tumor DNA was studied (median age = 69 years [59–79], IPI2–3: 64%; 4–5: 36%, 40 treated by R-CHOP and 29 by CHOP). A single QMPSF assay, validated by CGH array, to detect GCNA of 8 relevant genes including SIM1 (6q16), MYC (8q24), CDNK2A (9p21), RB1 (13q14), REL (2p13), BCL2 (18q21), TP53 (17p13), and CDKN1B (12p13) was performed. In addition a dedicated QMPSF assay that provides a “bar code” of the 9p21 locus containing CDKN2A (p16INK4a and p14ARF) and CDKN2B (p15INK4b) was designed. To delineate specific gene expression profile according to recurrent GCNA a subset of 52 patients were studied by both GEP (Affymetrix U133A) and QMPSF technologies. Gains of MYC, BCL2, and REL were observed in 13, 28 and 20 % respectively. DNA copy losses of TP53, CDNK2A, RB1 and SIM1 were observed in 9, 40, 6 and 17 % of cases respectively. Using supervised analysis, we delineated specific GEP according to the most frequent GCNA detected by QMPSF. Interestingly, a signature related to 9p21 locus (CDKN2A/CDKN2B) deletion was associated with an overexpression of several ribosome machinery coding genes and the involvement of distinct antiapoptotic molecular mechanisms. Subsequent genomic analysis with the dedicated assay indicated that in most of cases deletions were homozygous and abolished simultaneously p14arf and p16INK4a expression. With a median follow-up of 81 months, CDKN2A deletion, strongly correlates to a poor outcome in the entire cohort (5y OS=25% respectively vs.60% for patients in germline configuration, p=.003) and in the subgroup of patients treated by R-CHOP (5y OS=40% vs.70%, p=.04). Furthermore, prognosis impact of GCNA involving CDKN2A was validated in an independent set of 35 patients treated by R-CHOP. To conclude, combination of QMPSF and GEP may constitute a powerful approach to delineate new genomic pathways with prognosis impact in DLBCL. Notably, CDKN2A/CDKN2B loss, detected in more than one third of DLBCL patients constitutes a strong factor of chemoresistance that is not overcome by R combination. GEP indicates that this may be a consequence of an independent p14arf/p53 pathway, involving the well-established p14arf related ribosome regulation function.


2011 ◽  
Vol 96 (11) ◽  
pp. E1876-E1880 ◽  
Author(s):  
Jaroslaw Jendrzejewski ◽  
Jerneja Tomsic ◽  
Gerard Lozanski ◽  
Jadwiga Labanowska ◽  
Huiling He ◽  
...  

Abstract Context: The family risk ratio for papillary thyroid carcinoma (PTC) is among the highest of all cancers. Collectively, familial cases (fPTC) and sporadic cases (sPTC) are not known to show molecular differences. However, one study reported that telomeres were markedly shorter and the telomerase reverse transcriptase (TERT) gene was amplified and up-regulated in germline DNA from patients with fPTC compared with sPTC. Objective: The aim of this study was to evaluate telomere length and TERT gene amplification and expression in blood samples of fPTC and sPTC patients in a genetically distinct population from the previous study. Design: In 42 fPTC and 65 sPTC patients, quantitative real-time PCR was employed to measure the relative telomere length (RTL) and TERT gene copy number and RNA level. To validate the results using alternative methods, we further studied a subset of the original cohort consisting of randomly chosen fPTC (n = 10) and sPTC (n = 14) patients and controls (n = 21) by assessing both telomere length by flow fluorescent in situ hybridization and TERT gene expression by quantitative real-time PCR. Results: RTL and TERT gene copy number did not differ between fPTC and sPTC (P = 0.957 and P = 0.998, respectively). The mean RTL and TERT gene expression were not significantly different among the groups of the validation series (P = 0.169 and P = 0.718, respectively). Conclusion: Our data show no difference between familial and sporadic PTC with respect to telomere length, TERT copy number, or expression in our cohort. Further investigations in additional cohorts of patients are desirable.


Sign in / Sign up

Export Citation Format

Share Document