Gene Expression Profiling of Hyperdiploid Multiple Reveal Complex Gene Dosage Effects and an mRNA Translation/Protein Synthesis Signature.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1538-1538
Author(s):  
Wee-Joo Chng ◽  
Scott Van Wier ◽  
Gregory Ahmann ◽  
Tammy Price-Troska ◽  
Kim Henderson ◽  
...  

Abstract Hyperdiploid MM (H-MM), characterized by recurrent trisomies constitute about 50% of MM, yet very little is known about its pathogenesis and oncogenic mechanisms. Studies in leukemia and solid tumors have shown gene dosage effect of aneuploidy on gene expression. To determine the possible gene dosage effect and deregulated cellular program in H-MM we undertook a gene expression study of CD138-enriched plasma-cell RNA from 53 hyperdiploid and 37 non-hyperdiploid MM (NH-MM) patients using the Affymetrix U133A chip (Affymetrix, Santa Clara, CA). Gene expression data was analyzed using GeneSpring 7 (Agilent Technologies, Palo Alto, CA). Genes differentially expressed between H-MM and NH-MM were obtained by t-test (p<0.01). The majority of the differentially expressed genes (57%) were under-expressed in H-MM. Genes located on the commonly trisomic chromosomes were mostly (but not always) over-expressed in H-MM and constitute 76% of over-expressed genes. Chromosome 1 contained the most differentially expressed genes (17%) followed by chromosome 12 (9%), and 19 (8%). To examine the relationship of gene copy number to gene expression, we examined the expression of genes on chromosomes 9 and 15 in subjects with 2 copies (15 normal control and 20 NH-MM) and 3 copies (12 H-MM) of each chromosome as detected by interphase FISH. We then derived a ratio of the mean expression of each gene on these chromosomes between patients with 3 copies and 2 copies of the chromosome. If a simple relationship exists between gene expression and gene copy number, one would expect the ratio of expression of most genes on these two chromosomes to be about 1.5 in H-MM compared to NH-MM. However, many genes have ratios either higher than 2 or lower than 0.5. Furthermore, when the heterogeneity of cells with underlying trisomies is taken into consideration by correcting the ratio for the number of cells with trisomies, the actual ratio is always lower than the expected ratio. When the expression of genes on a chromosome was compressed to a median value, this value was always higher in the trisomic chromosomes for H-MM compared to NH-MM. The data suggests that although gene dosage influence gene expression, the relationship is complex and some genes are more gene dosage dependent than others. Amongst the differentially expressed genes with known function, 33% are involved in mRNA translation/protein synthesis. Of note, 37 of the top 100 differentially expressed genes are involved in these processes. In particular, 60 ribosomal protein (RP) genes are significantly (p<0.05) upregulated in H-MM. This signature in H-MM is not associated with increase proliferation as measured by PCLI. This predominant signature suggests that deregulated protein synthesis may be important for the biology of H-MM. Many of these RPs are involved in the synthesis of product of oncogenic pathways (e.g. MYC, NF-KB pathways) and may mediate the growth and survival of tumor cells. It is therefore possible that these tumor cells may be sensitive to the disruption of mRNA translation/protein synthesis. Targeting the mTOR pathway with rapamycin may therefore be useful for treatment of H-MM.

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3006-3006
Author(s):  
Wee-Joo Chng ◽  
Scott Van Wier ◽  
Gregory Ahmann ◽  
Tammy Price-Troska ◽  
Kim Henderson ◽  
...  

Abstract Hyperdiploid (>48 chromosomes) multiple myeloma (H-MM) and high hyperdiploid (>50 chromosomes) acute lymphoblastic leukemia (H-ALL) are characterized by aneuploidy and multiple recurrent trisomies (chromosome 3,5,7,9,11,15,19 for H-MM and chromosomes X,4,6,10,14,17,18,21 for H-ALL). Little is known about the oncogenic events, consequences of the trisomies and reasons for the different recurrent trisomies. In an attempt to answer these questions, we undertook a combined gene expression and network/pathway analysis approach. Gene expression data was generated using the Affymetrix U133A chip (Affymetrix, Santa Clara, Ca) for 53 H-MM and 37 non-hyperdiploid MM (NH-MM) cases using CD138-enriched plasma-cell RNA. Gene expression data using the same chip for ALL was obtained from previous published data (Ross ME et al Blood2004; 104: 3679–3687). Analysis was performed using Genespring 7 (Agilent Technologies, Palo Alto, CA). By comparing the median expression of all genes on each chromosome between H-MM/H-ALL and their non-hyperdiploid counterparts (NH-MM and NH-ALL) for the 23 chromosomes (excluding Y), one can clearly identify the commonly trisomic chromosomes in H-ALL and H-MM. However, the relationship of gene expression was highly variable for H-MM and NH-MM as compared to H-ALL and NH-ALL which tended to have expression ratios close to 1 for the non-trisomic chromosomes. Sixty-nine percent of the differentially expressed genes generated by ANOVA analysis (p<0.001) in H-ALL were on the commonly trisomic chromosomes and were upregulated whereas the corresponding figure in H-MM is 40%. These similarities and differences probably reflect both an overall gene dosage effect and the different complexities of the karyotypes of H-MM and H-ALL compared to NH-MM and NH-ALL respectively (MM karyotypes are more complex, hence difference between H and NH-MM is greater and less confined to the trisomic chromosomes). We next performed network analysis using a curated web-based software (MetaCore, GeneGo Inc, St Joseph, MI) using the 2 sets of differentially expressed genes. Majority of genes differentially expressed in H-MM are involved in mRNA translation/protein synthesis whereas the genes differentially expressed in H-ALL were mainly involved in signal transduction. Therefore the transcriptional program that characterize the difference between H and NH-MM/ALL seem to recapitulate normal cellular function: protein synthesis in the mature secretory plasma cells and signal transduction in response to cytokines in a differentiating early-B cell. However, due to the concurrent deregulation of many genes on these trisomic chromosomes, these and other cellular programs are deregulated resulting in malignant transformation. We also intersected the 2 lists of differentially expressed genes to find genes that are up- or downregulated in both H-MM and H-ALL relative to the NH tumors. Thirteen genes including interferon response genes (TNFSF10, MX1, ZNF185) and transcription factors like RUNX1 were upregulated, whereas 13 genes including a cancer testis antigen gene (MAGED4) were downregulated in both H-MM and H-ALL. These genes may point to common oncogenic mechanisms.


2011 ◽  
Vol 136 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Carl E. Sams ◽  
Dilip R. Panthee ◽  
Craig S. Charron ◽  
Dean A. Kopsell ◽  
Joshua S. Yuan

Glucosinolates (GSs) and carotenoids are important plant secondary metabolites present in several plant species, including arabidopsis (Arabidopsis thaliana). Although genotypic and environmental regulation of GSs and carotenoid compounds has been reported, few studies present data on their regulation at the molecular level. Therefore, the objective of this study was to explore differential expression of genes associated with GSs and carotenoids in arabidopsis in response to selenium fertilization, shown previously to impact accumulations of both classes of metabolites in Brassica species. Arabidopsis was grown under 0.0 or 10.0 μM Na2SeO4 in hydroponic culture. Shoot and root tissue samples were collected before anthesis to measure GSs and carotenoid compounds and conduct gene expression analysis. Gene expression was determined using arabidopsis oligonucleotide chips containing more than 31,000 genes. There were 1274 differentially expressed genes in response to selenium (Se), of which 516 genes were upregulated. Ontology analysis partitioned differentially expressed genes into 20 classes. Biosynthesis pathway analysis using AraCyc revealed that four GSs, one carotenoid, and one chlorophyll biosynthesis pathways were invoked by the differentially expressed genes. Involvement of the same gene in more than one biosynthesis pathway indicated that the same enzyme may be involved in multiple GS biosynthesis pathways. The decrease in carotenoid biosynthesis under Se treatment occurred through the downregulation of phytoene synthase at the beginning of the carotenoid biosynthesis pathway. These findings may be useful to modify the GS and carotenoid levels in arabidopsis and may lead to modification in agriculturally important plant species.


2020 ◽  
Vol 8 (10) ◽  
pp. 1621
Author(s):  
Guillaume Dubrulle ◽  
Adeline Picot ◽  
Stéphanie Madec ◽  
Erwan Corre ◽  
Audrey Pawtowski ◽  
...  

The fungal phytopathogen Colletotrichum lupini is responsible for lupin anthracnose, resulting in significant yield losses worldwide. The molecular mechanisms underlying this infectious process are yet to be elucidated. This study proposes to evaluate C. lupini gene expression and protein synthesis during lupin infection, using, respectively, an RNAseq-based transcriptomic approach and a mass spectrometry-based proteomic approach. Patterns of differentially-expressed genes in planta were evaluated from 24 to 84 hours post-inoculation, and compared to in vitro cultures. A total of 897 differentially-expressed genes were identified from C. lupini during interaction with white lupin, of which 520 genes were predicted to have a putative function, including carbohydrate active enzyme, effector, protease or transporter-encoding genes, commonly described as pathogenicity factors for other Colletotrichum species during plant infection, and 377 hypothetical proteins. Simultaneously, a total of 304 proteins produced during the interaction were identified and quantified by mass spectrometry. Taken together, the results highlight that the dynamics of symptoms, gene expression and protein synthesis shared similarities to those of hemibiotrophic pathogens. In addition, a few genes with unknown or poorly-described functions were found to be specifically associated with the early or late stages of infection, suggesting that they may be of importance for pathogenicity. This study, conducted for the first time on a species belonging to the Colletotrichum acutatum species complex, presents an opportunity to deepen functional analyses of the genes involved in the pathogenicity of Colletotrichum spp. during the onset of plant infection.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2290-2290
Author(s):  
Jan Dürig ◽  
Stefanie Bug ◽  
Ludger Klein-Hitpass ◽  
Tanja Boes ◽  
Thomas Jöns ◽  
...  

Abstract T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoma derived from mature T-cells, which is in most cases characterized by the presence of an inv(14)(q11q32) and a characteristic pattern of secondary chromosomal aberrations. DNA microarray technology was employed to compare the transcriptomes of eight immunomagnetically purified CD3+ normal donor derived peripheral blood cells with five highly purified inv(14)-positive T-PLL blood samples. In comparison between the two experimental groups 740 genes were identified as differentially expressed including functionally important genes involved in lymphomagenesis, cell cycle regulation, apoptosis and DNA repair. Notably, the differentially expressed genes were found to be significantly enriched in genomic regions affected by recurrent chromosomal imbalances. Up-regulated genes clustered significantly on chromosome arms 6p and 8q and down-regulated genes on 6q, 8p, 10p, 11q and 18p. High-resolution copy-number determination using SNP-chip technology in twelve inv(14)/t(14;14)-positive T-PLL including those analyzed for gene expression refined chromosomal breakpoints as well as regions of imbalances. In conclusion, combined transcriptional and molecular cytogenetic profiling identified novel specific chromosomal loci and genes which are likely to be involved in disease progression and suggests a gene dosage effect as a pathogenic mechanism in T-PLL.


2006 ◽  
Vol 52 (12) ◽  
pp. 1218-1227 ◽  
Author(s):  
B W Jones ◽  
M K Nishiguchi

A major force driving in the innovation of mutualistic symbioses is the number of adaptations that both organisms must acquire to provide overall increased fitness for a successful partnership. Many of these symbioses are relatively dependent on the ability of the symbiont to locate a host (specificity), as well as provide some novel capability upon colonization. The mutualism between sepiolid squids and members of the Vibrionaceae is a unique system in which development of the symbiotic partnership has been studied in detail, but much remains unknown about the genetics of symbiont colonization and persistence within the host. Using a method that captures exclusively expressed transcripts in either free-living or host-associated strains of Vibrio fischeri, we identified and verified expression of genes differentially expressed in both states from two symbiotic strains of V. fischeri. These genes provide a glimpse into the microhabitat V. fischeri encounters in both free-living seawater and symbiotic host light organ-associated habitats, providing insight into the elements necessary for local adaptation and the evolution of host specificity in this unique mutualism.Key words: Vibrionaceae, gene expression, Sepiolidae, Euprymna, SCOTS.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2034-2034
Author(s):  
Claudia Schoch ◽  
Wolfgang Kern ◽  
Alexander Kohlmann ◽  
Martin Dugas ◽  
Wolfgang Hiddemann ◽  
...  

Abstract Trisomy 8 is the most frequently observed trisomy in acute myeloid leukemia (AML). It occurs as a sole karyotype abnormality or in addition to other chromosome aberrations. It was the aim of this study to analyze the impact of trisomy 8 on the expression of genes located on chromosome 8 in different AML subgroups. Therefore, gene expression analyses were performed in a total of 567 AML cases using Affymetrix U133A+B oligonucleotide microarrays. The following 14 subgroups were analyzed: +8 sole (n=19), +8 within a complex aberrant karyotype (n=11), +8 with t(15;17) (n=7), +8 and inv(16) (n=3), +8 with t(8;21) (n=3), +8 and 11q23/MLL (n=8), and +8 with other abnormalities (n=10). These were compared to 200 AML with normal karyotype and the following subgroups without trisomy 8: complex aberrant karyotype (n=73), t(15;17) (n=36), inv(16) (n=46), t(8;21) (n=37), 11q23/MLL (n=37), and other abnormalities (n=77). In total 1188 probe sets cover sequences located on chromosome 8 representing 580 genes. A significant higher mean expression of all genes located on chromosome 8 was observed in subgroups with +8 in comparison to their respective control groups (for all comparisons, p<0.05). Significantly higher expressed genes in groups with +8 in comparison to the respective groups without +8 were identified in all comparisons. The number of identified genes ranged from 40 in 11q23/MLL to 326 in trisomy 8 sole vs. normal. There was no common gene significantly overexpressed in all comparisons. Three genes (TRAM1, CHPPR, MGC40214) showed a significantly higher expression in 5 out of 7 comparisons. Between 19 and 107 genes with an exclusive overexpression in trisomy 8 cases in only one subtype comparison were identified. In addition, we performed class prediction using support vector machines (SVM) including all probe sets on the arrays. In one approach all 14 different subgroups were analyzed as one class each. Only 3 out of 61 cases with trisomy 8 were assigned into their correct subclass, while 40 cases were assigned to their corresponding genetic subclass without trisomy 8. In a second approach only two classes were defined: all cases with trisomy 8 combined vs. all cases without trisomy 8. Only 26 out of 61 (42.6%) with trisomy 8 were identified correctly underlining the fact that no distinct gene expression pattern is associated with trisomy 8 in general. Performing SVM only with genes located on chromosome 8 did not improve the correct assignment of cases with trisomy 8 overall. Only cases with trisomy 8 sole were correctly predicted in 58% as compared to 11% in SVM using all genes. In conclusion, overall the gain of chromosome 8 leads to a higher expression of genes located on chromosome 8. However, no consistent pattern of genes was identified which shows a higher expression in all AML subtypes with trisomy 8. This data suggest that the higher expression of genes located on chromosome 8 only in part is directly related to a gene dosage effect. Trisomy 8 may rather provide a platform for a higher expression of chromosome 8 genes which are specifically upregulated by accompanying genetic abnormalities in the respective AML subtypes. Therefore, trisomy 8 does not seem to be an abnormality determining specific disease characteristics such as the well known primary aberrations (t(8;21), inv(16), t(15;17), MLL/11q23) but rather a disease modulating secondary event in addition to primary cytogenetic or moleculargenetic aberrations.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 5204-5204
Author(s):  
Hong Jiang ◽  
Cheryl Wade-Harris ◽  
Megan Lim ◽  
Laxmi Baxi ◽  
Mitchell S. Cairo

Abstract It has been recognized that dysfunction of CB immune system is in part due to the immaturity of CB cellular immunity (Cairo, Blood,1997). The molecular mechanisms associated with the immaturity of CB cellular immunity including DC subset remain to be defined. The maturation status of DC greatly influences its antigen presentation capacity. Recently, we have utilized oligonucleotide microarray to demonstrate differential gene expression profiles of CB vs APB Mo (Jiang/Cairo, JI, 2004). In the current study, differential expressed genes and proteins were examined in Mo-derived CB vs. APB DC during DC developmental stages: Mo, immature DC (iDC) and mDC, by utilizing oligonucleotide microarray and proteomics. Briefly, Mo isolated from CB or APB and cultured for 8 days with GM-CSF/IL-4 (iDC) and further stimulated with LPS (mDC). Oligonucleotide microarray was carried out using U133A gene chip (Affymetrix). The representative differentially expressed genes resulted from microarray analysis were selected and analyzed by quantitative RT-PCR (Roche). The proteomic technique was conducted by liquid chromatography (LC) and mass spectrometry (MS) (Lim, Mol Cell Proteomics, 2006). The differentially expressed proteins were compared in CB vs. APB for iDC and mDC. We identified different gene expression patterns that were significantly lower in CB vs. APB in different stages during DC differentiation: Mo, iDC and mDC. These differentially expressed genes included RELA (5F), JUNB (6F), IRF-1 (3F) in Mo; CREB5 (3F), MAP7 (5F), IL1R2 (6F) in iDC; and HLA-DQA1 (4F), CD80 (3F), IRF-5 (3F) in mDC. The proteomic studies demonstrated Tyrosine Kinase Fer (12.5F), Actin regulator 3 (2.5F), Rap guanine nucleotide exchange factor 1 (2.4F) and Myeloid cell nuclear differentiation antigen (1.5F) were expressed higher in APB vs.CB iDC, while MAX binding protein MNT (5.5F), IRS2 (2.2F) and Zinc-Finger Proteins (514, 212, 462) (3–14F) were expressed higher in CB vs. APB iDC. Further, the proteomic results also indicated other Zinc-Finger Proteins (292, 221, 474) (2–5F), Fibrillin 1 precursor (2.5F) and interleukin-4 (7.7F) were expressed higher in APB vs. CB mDC. In contrast, cyclin I (3F), Rb-like protein 2 (4.35 F) and PKC theta (2F) were significantly lower in APB vs. CB DC. Moreover, the comparison of CB vs. APB DC antigen presenting activity by ELISPOT was performed and the influenza-peptide loaded CB-mDC demonstrated weaker ability to induce T cells to produce IFNg compared with APB-mDC. In summary, these differentially expressed genes in Mo (RELA, JUN) may play key roles in initiating Mo differentiation toward DC. The increased expression of genes in APB vs. CB iDC, like CREB5, IL1R2, may be involved in mediating maturation process of iDC to mDC. Lastly, the elevated expression of genes in APB vs. CB mDC, such as HLA-DQA1, CD80, IRF5 among others, may be likely to control mDC functionality as demonstrated by weaker antigen presenting activity of CB vs. APB mDC. We postulate that decreased expression of specific genes in CB vs. APB DC during DC developmental stages may in part be responsible for the lack of maturity of CB, and ultimately may partially be responsible for differential CB vs. APB innate and adaptive immunity.


2021 ◽  
Author(s):  
Roberto de la Cerda ◽  
Karsten Hookamp ◽  
Fiona Roche ◽  
Georgia Thompson ◽  
Soukaina Timouma ◽  
...  

The lager yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and are divided into two broad groups, Group I and II. The two groups evolved from at least one common hybridisation event but have subsequently diverged with Group I strains losing many S. cerevisiae chromosomes while the Group II strains retain both sub-genomes. The complex genomes, containing orthologous alleles from the parental chromosomes, pose interesting questions regarding gene regulation and its impact on the fermentation properties of the strains. Superimposed on the presence of orthologous alleles are complexities of gene dosage due to the aneuploid nature of the genomes. We examined the contribution of the S. cerevisiae and S. eubayanus alleles to the gene expression patterns of Group I and II strains during fermentation. We show that the relative expression of S. cerevisiae and S. eubayanus orthologues is positively correlated with gene copy number. Despite the reduced S. cerevisiae content in the Group I strain, S. cerevisiae orthologues contribute to biochemical pathways upregulated during fermentation which may explain the retention of specific chromosomes in the strain. Conversely, S. eubayanus genes are significantly overrepresented in the upregulated gene pool in the Group II strain. Comparison of the transcription profiles of Group I and II strains during fermentation identified both common and unique gene expression patterns, with gene copy number being a dominant contributory factor. Thus, the aneuploid genomes create complex patterns of gene expression during fermentation with gene dosage playing a crucial role both within and between strains.


2020 ◽  
Author(s):  
Eleonora Porcu ◽  
Marie C. Sadler ◽  
Kaido Lepik ◽  
Chiara Auwerx ◽  
Andrew R. Wood ◽  
...  

AbstractComparing transcript levels between healthy and diseased individuals allows the identification of differentially expressed genes, which may be causes, consequences or mere correlates of the disease under scrutiny. Here, we propose a bi-directional Transcriptome-Wide Mendelian Randomization (TWMR) approach that integrates summary-level data from GWAS and whole-blood eQTLs in a MR framework to investigate the causal effects between gene expression and complex traits.Whereas we have previously developed a TWMR approach to elucidate gene expression to trait causal effects, here we are adapting the method to shed light on the causal imprint of complex traits on transcript levels. We termed this new approach reverse TWMR (revTWMR). Integrating bi-directional causal effects between gene expression and complex traits enables to evaluate their respective contributions to the correlation between gene expression and traits. We uncovered that whole blood gene expression-trait correlation is mainly driven by causal effect from the phenotype on the expression rather than the reverse. For example, BMI- and triglycerides-gene expression correlation coefficients robustly correlate with trait-to-expression causal effects (r=0.09, P=1.54×10−39 and r=0.09, P=1.19×10−34, respectively), but not detectably with expression-to-trait effects.Genes implicated by revTWMR confirmed known associations, such as rheumathoid arthritis and Crohn’s disease induced changes in expression of TRBV and GBP2, respectively. They also shed light on how clinical biomarkers can influence their own levels. For instance, we observed that high levels of high-density lipoprotein (HDL) cholesterol lowers the expression of genes involved in cholesterol biosynthesis (SQLE, FDFT1) and increases the expression of genes responsible for cholesterol efflux (ABCA1, ABCG1), two key molecular pathways in determining HDL levels. Importantly, revTWMR is more robust to pleiotropy than polygenic risk score (PRS) approaches which can be misled by pleiotropic outliers. As one example, revTWMR revealed that the previously reported association between educational attainment PRS and STX1B is exclusively driven by a highly pleiotropic SNP (rs2456973), which is strongly associated with several hematological and anthropometric traits.In conclusion, our method disentangles the relationship between gene expression and phenotypes and reveals that complex traits have more pronounced impact on gene expression than the reverse. We demonstrated that studies comparing the transcriptome of diseased and healthy subjects are more prone to reveal disease-induced gene expression changes rather than disease causing ones.


2020 ◽  
Author(s):  
Jiasheng Xu ◽  
Kaili Liao ◽  
Han Nie ◽  
Danni Xue ◽  
Xiaozhong Wang

Abstract To investigate the effect of radiation therapy on differential expression of genes in tumor-associated fibroblasts and prognosis of patients.Methods: The tumor-associated fibroblast gene expression profile data chip GSE37318 after radiotherapy treatment was retrieved from the GEO database, and the differentially expressed genes were screened using the limma R software package; GO and KEGG pathway enrichment analysis was performed using the DAVID tool; Protein interaction networks was built by String and Cytoscape software and core genes were obtained; GEPIA was used for prognostic value analysis; Immunohistochemistry was used to detect the expression of the top 5 hub genes in tumor tissues of patients in the radiotherapy and non-radiotherapy groups.Results: 144 genes were up-regulated and 54 genes were down-regulated, which were mainly enriched in functional pathways such as cell stress, DNA damage, cell cycle, aging, apoptosis, oxidative stress, and p53 signaling pathway. The protein interaction network was constructed and the top 20 hub genes were obtained. Prognostic analysis showed that: Expression of up-regulated PCNA and hub genes that were down-regulated after irradiation, such as MCM10, DLGAP5, FANCI, CENPA, CDC6, FBXO5, NCAPG, and DTL, has a negative correlation with the overall survival time of lung cancer patients (p <0.05). Immunohistochemical results showed that PCNA gene expression was up-regulated in patients with radiotherapy compared with patients without radiotherapy. The test results are consistent with the results of the biochemical analysis.Conclusion: Radiotherapy can induce differential expression of genes in tumor-associated fibroblasts, and these differentially expressed genes can be used as potential molecular markers for tumor radiotherapy effect and patient prognosis.


Sign in / Sign up

Export Citation Format

Share Document