scholarly journals A striatal circuit balances learned fear in the presence and absence of sensory cues

2021 ◽  
Author(s):  
Michael Kintscher ◽  
Olexiy Kochubey ◽  
Ralf Schneggenburger

During fear learning, defensive behaviors need to be finely balanced, to allow animals to return to normal behaviors after the termination of threat-indicating sensory cues. Nevertheless, the circuits underlying such balancing are largely unknown. Here, we investigate the role of direct (D1R+) - and indirect (Adora+) pathway neurons of the amygdala-striatal transition zone (AStria) in fear learning. In-vivo Ca2+ imaging revealed that fear learning increased the responses of D1R+ AStria neurons to an auditory CS, given that the animal moved. In Adora+ neurons, fear learning also induced a differential activity during freezing and movement, albeit with little influence of the CS. In-vivo optogenetic silencing during the training day showed that plasticity in D1R+ AStria neurons contributes to auditory-cued fear memories, whereas Adora+ neurons suppressed learned freezing when no CS was present. Circuit tracing experiments identified cortical input structures to the AStria, and recording of optogenetically-evoked EPSCs at the corresponding projection revealed different forms of long-term plasticity at synapses onto D1R+ and Adora+ AStria neurons. Taken together, direct- and indirect pathways neurons of the AStria show differential signs of in-vivo and ex-vivo plasticity after fear learning, and balance defensive behaviors in the presence and absence of aversively motivated sensory cues.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 614-614 ◽  
Author(s):  
Haiming Xu ◽  
Hartmut Geiger ◽  
Kathleen Szczur ◽  
Deidra Deira ◽  
Yi Zheng ◽  
...  

Abstract Hematopoietic stem cell (HSC) engraftment is a multistep process involving HSC homing to bone marrow (BM), self-renewal, proliferation and differentiation to mature blood cells. However, the molecular regulation of HSC engraftment is still poorly defined. Small Rho GTPases are critical regulator of cell migration, proliferation and differentiation in multiple cell types. While their role in HSC functions has begun to be understood, the role of their regulator in vivo has been understudied. P190-B GTPase Activating Protein (GAP), a negative regulator of Rho activity, has been implicated in regulating cell size and adipogenesis-myogenesis cell fate determination during fetal development (Sordella, Dev Cell, 2002; Cell 2003). Here, we investigated the role of p190-B in HSC/P engraftment. Since mice lacking p190-B die before birth, serial competitive repopulation assay was performed using fetal liver (FL) tissues from day E14.5 WT and p190-B−/− embryos. WT and p190-B−/− FL cells exhibited similar levels of engraftment in primary recipients. However, the level of contribution of p190-B−/− cells to peripheral blood and bone marrow was maintained between the primary and secondary recipients and still easily detectable in tertiary recipients, while the level of contribution of FL WT cells dramatically decreased with successive serial transplantion and was barely detectable in tertiary recipients. The contribution to T cell, B cell and myeloid cell reconstitution was similar between the genotypes. A pool of HSC was maintained in serially transplanted p190-B−/− animals, since LinnegScaposKitpos (LSK) cells were still present in the BM of p190-B−/− secondary engrafted mice while this population disappeared in WT controls. Importantly, this enhanced long term engraftment was due to a difference in the functional capacity of p190-B−/− HSC compared to WT HSC since highly enriched p190-B−/− HSC (LSK) demonstrated similar enhanced serial transplantation potential. Because previous studies have suggested that the loss of long term function of HSC during serial transplantation can depend, at least in part, on the upregulation of the cyclin dependent kinase inhibitor p16Ink4a (Ito et al, Nat Med 2006), the expression of p16Ink4a was examined during serial transplantation. While expression of p16Ink4a increased in WT HSC in primary and secondary recipients, p16Ink4a remained low in p190-B−/− HSC, which indicated that p190-B-deficiency represses the upregulation of p16Ink4a in HSC in primary and secondary transplant recipients. This provides a possible mechanism of p190-B-mediated HSC functions. We next examined whether p190-B-deficiency may preserve the repopulating capacity of HSC/P during ex vivo cytokine-induced culture. While freshly isolated LSK cells from WT and p190-B−/− mice exhibited comparable intrinsic clonogenic capacity, the frequency of colony-forming unit after 7 days in culture was 2 fold-higher in p190-B−/− compared with WT cultures, resulting in a net CFU expansion. Furthermore, competitive repopulation assays showed significantly higher repopulating activity in mice that received p190-B−/− cultured cells compared with WT cells equivalent to a 4.4-fold increase in the estimated frequency of repopulating units. Interestingly, p190-deficiency did not alter cell cycling rate or survival both in vivo and in vitro. Therefore, p190-B-deficiency maintains key HSC functions either in vivo or in ex vivo culture without altering cycling rate and survival of these cells. These findings define p190-B as a critical regulator of HSC functions regulating self renewal activity while maintaining a balance between proliferation and differentiation.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Maria Mensch ◽  
Jade Dunot ◽  
Sandy M. Yishan ◽  
Samuel S. Harris ◽  
Aline Blistein ◽  
...  

Abstract Background Amyloid precursor protein (APP) processing is central to Alzheimer’s disease (AD) etiology. As early cognitive alterations in AD are strongly correlated to abnormal information processing due to increasing synaptic impairment, it is crucial to characterize how peptides generated through APP cleavage modulate synapse function. We previously described a novel APP processing pathway producing η-secretase-derived peptides (Aη) and revealed that Aη–α, the longest form of Aη produced by η-secretase and α-secretase cleavage, impaired hippocampal long-term potentiation (LTP) ex vivo and neuronal activity in vivo. Methods With the intention of going beyond this initial observation, we performed a comprehensive analysis to further characterize the effects of both Aη-α and the shorter Aη-β peptide on hippocampus function using ex vivo field electrophysiology, in vivo multiphoton calcium imaging, and in vivo electrophysiology. Results We demonstrate that both synthetic peptides acutely impair LTP at low nanomolar concentrations ex vivo and reveal the N-terminus to be a primary site of activity. We further show that Aη-β, like Aη–α, inhibits neuronal activity in vivo and provide confirmation of LTP impairment by Aη–α in vivo. Conclusions These results provide novel insights into the functional role of the recently discovered η-secretase-derived products and suggest that Aη peptides represent important, pathophysiologically relevant, modulators of hippocampal network activity, with profound implications for APP-targeting therapeutic strategies in AD.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3678
Author(s):  
Vera Chernonosova ◽  
Alexandr Gostev ◽  
Ivan Murashov ◽  
Boris Chelobanov ◽  
Andrey Karpenko ◽  
...  

We examined the physicochemical properties and the biocompatibility and hemocompatibility of electrospun 3D matrices produced using polyurethane Pellethane 2363-80A (Pel-80A) blends Pel-80A with gelatin or/and bivalirudin. Two layers of vascular grafts of 1.8 mm in diameter were manufactured and studied for hemocompatibility ex vivo and functioning in the infrarenal position of Wistar rat abdominal aorta in vivo (n = 18). Expanded polytetrafluoroethylene (ePTFE) vascular grafts of similar diameter were implanted as a control (n = 18). Scaffolds produced from Pel-80A with Gel showed high stiffness with a long proportional limit and limited influence of wetting on mechanical characteristics. The electrospun matrices with gelatin have moderate capacity to support cell adhesion and proliferation (~30–47%), whereas vascular grafts with bivalirudin in the inner layer have good hemocompatibility ex vivo. The introduction of bivalirudin into grafts inhibited platelet adhesion and does not lead to a change hemolysis and D-dimers concentration. Study in vivo indicates the advantages of Pel-80A grafts over ePTFE in terms of graft occlusion, calcification level, and blood velocity after 6 months of implantation. The thickness of neointima in Pel-80A–based grafts stabilizes after three months (41.84 ± 20.21 µm) and does not increase until six months, demonstrating potential for long-term functioning without stenosis and as a suitable candidate for subsequent preclinical studies in large animals.


1995 ◽  
Vol 73 (9-10) ◽  
pp. 575-592 ◽  
Author(s):  
Harish C. Pant ◽  
Veeranna

Neurofilament proteins (NFPs) are highly phosphorylated molecules in the axonal compartment of the adult nervous system. The phosphorylation of NFP is considered an important determinant of filament caliber, plasticity, and stability. This process reflects the function of NFs during the lifetime of a neuron from differentiation in the embryo through long-term activity in the adult until aging and environmental insult leads to pathology and ultimately death. NF function is modulated by phosphorylation–dephosphorylation in each of these diverse neuronal states. In this review, we have summarized some of these properties of NFP in adult nervous tissue, mostly from work in our own laboratory. Identification of sites phosphorylated in vivo in high molecular weight NFP (NF-H) and properties of NF-associated and neural-specific kinases phosphorylating specific sites in NFP are described. A model to explain the role of NF phosphorylation in determining filament caliber, plasticity, and stability is proposed.Key words: neurofilament proteins, phosphorylation, kinases, phosphatases, regulators, inhibitors, multimesic complex, domains.


2015 ◽  
Vol 12 (110) ◽  
pp. 20150589 ◽  
Author(s):  
Maria C. Z. Meneghetti ◽  
Ashley J. Hughes ◽  
Timothy R. Rudd ◽  
Helena B. Nader ◽  
Andrew K. Powell ◽  
...  

Heparan sulfate (HS) polysaccharides are ubiquitous components of the cell surface and extracellular matrix of all multicellular animals, whereas heparin is present within mast cells and can be viewed as a more sulfated, tissue-specific, HS variant. HS and heparin regulate biological processes through interactions with a large repertoire of proteins. Owing to these interactions and diverse effects observed during in vitro , ex vivo and in vivo experiments, manifold biological/pharmacological activities have been attributed to them. The properties that have been thought to bestow protein binding and biological activity upon HS and heparin vary from high levels of sequence specificity to a dependence on charge. In contrast to these opposing opinions, we will argue that the evidence supports both a level of redundancy and a degree of selectivity in the structure–activity relationship. The relationship between this apparent redundancy, the multi-dentate nature of heparin and HS polysaccharide chains, their involvement in protein networks and the multiple binding sites on proteins, each possessing different properties, will also be considered. Finally, the role of cations in modulating HS/heparin activity will be reviewed and some of the implications for structure–activity relationships and regulation will be discussed.


2018 ◽  
Vol Volume 13 ◽  
pp. 1059-1079 ◽  
Author(s):  
Irhan Abu Hashim ◽  
Noha Abo El-Magd ◽  
Ahmed El-Sheakh ◽  
Mohammed Hamed ◽  
Abd El-Gawad Abd El-Gawad

Sign in / Sign up

Export Citation Format

Share Document