scholarly journals Manganese is a Physiologically Relevant TORC1 Activator in Yeast and Mammals.

2021 ◽  
Author(s):  
Raffaele Nicastro ◽  
Helene Gaillard ◽  
Laura Zarzuela ◽  
Elisabet Fernandez-Garcia ◽  
Mercedes Tome ◽  
...  

The essential biometal manganese (Mn) functions as a cofactor for several enzymatic activities that are critical for the prevention of human diseases. Whether intracellular Mn levels may also modulate signaling events has so far remained largely unexplored. The target of rapamycin complex 1 (TORC1, mTORC1 in mammals) is a conserved protein kinase complex that requires metal co-factors to phosphorylate its downstream effectors as part of a central, homeostatic process that coordinates cell growth and metabolism in response to nutrient and/or growth factor availability. Using genetic and biochemical approaches, we show here that TORC1 activity is exquisitely sensitive to stimulation by Mn both in vivo and in vitro. Mn-mediated control of TORC1 depends on Smf1 and Smf2, two members of the family of natural resistance-associated macrophage protein (NRAMP) metal ion transporters, the turnover of which is subjected to feedback control by TORC1 activity. Notably, increased Mn levels and consequent activation of TORC1 cause retrograde dysregulation and antagonize the rapamycin-induced gene expression and autophagy programs in yeast. Because Mn also activates mTORC1 signaling in aminoacid starved human cells, our data indicate that intracellular Mn levels may constitute an evolutionary conserved physiological cue that modulates eukaryotic TORC1/mTORC1 signaling. Our findings therefore reveal a hitherto elusive connection between intracellular Mn levels, mTORC1 activity, and human diseases.

Minerals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 544 ◽  
Author(s):  
Bo Miao ◽  
Li Shen ◽  
Xueduan Liu ◽  
Weimin Zeng ◽  
Xueling Wu

The family of Nramp (natural resistance-associated macrophage protein) metal ion transporter functions in diverse organisms from bacteria to humans. Acidithiobacillus ferrooxidans (At. ferrooxidans) is a Gram-negative bacterium that lives at pH 2 in high concentrations of soluble ferrous ion (600 mM). The AFE_2126 protein of At. ferrooxidans of the Dachang Copper Mine (DC) was analyzed by bioinformatics software or online tools, showing that it was highly homologous to the Nramp family, and its subcellular localization was predicted to locate in the cytoplasmic membrane. Transcriptional study revealed that AFE_2126 was expressed by Fe2+-limiting conditions in At. ferrooxidans DC. It can be concluded that the AFE_2126 protein may function in ferrous ion transport into the cells. Based on the ΔpH of the cytoplasmic membrane between the periplasm (pH 3.5) and the cytoplasm (pH 6.5), it can be concluded that Fe2+ is transported in the direction identical to that of the H+ gradient. This study indirectly confirmed that the function of Nramp in At. ferrooxidans DC can transport divalent iron ions.


1993 ◽  
Vol 69 (01) ◽  
pp. 021-024 ◽  
Author(s):  
Shawn Tinlin ◽  
Sandra Webster ◽  
Alan R Giles

SummaryThe development of inhibitors to factor VIII in patients with haemophilia A remains as a serious complication of replacement therapy. An apparently analogous condition has been described in a canine model of haemophilia A (Giles et al., Blood 1984; 63:451). These animals and their relatives have now been followed for 10 years. The observation that the propensity for inhibitor development was not related to the ancestral factor VIII gene has been confirmed by the demonstration of vertical transmission through three generations of the segment of the family related to a normal (non-carrier) female that was introduced for breeding purposes. Haemophilic animals unrelated to this animal have not developed functionally significant factor VIII inhibitors despite intensive factor VIII replacement. Two animals have shown occasional laboratory evidence of factor VIII inhibition but this has not been translated into clinical significant inhibition in vivo as assessed by clinical response and F.VIII recovery and survival characteristics. Substantial heterogeneity of inhibitor expression both in vitro and in vivo has been observed between animals and in individual animals over time. Spontaneous loss of inhibitors has been observed without any therapies designed to induce tolerance, etc., being instituted. There is also phenotypic evidence of polyclonality of the immune response with variable expression over time in a given animal. These observations may have relevance to the human condition both in determining the pathogenetic factors involved in this condition and in highlighting the heterogeneity of its expression which suggests the need for caution in the interpretation of the outcome of interventions designed to modulate inhibitor activity.


2001 ◽  
Vol 69 (5) ◽  
pp. 3110-3119 ◽  
Author(s):  
Robert Barthel ◽  
Jianwei Feng ◽  
Jorge A. Piedrahita ◽  
David N. McMurray ◽  
Joe W. Templeton ◽  
...  

ABSTRACT Genetically based natural resistance to brucellosis in cattle provides for novel strategies to control zoonotic diseases. BovineNRAMP1, the homologue of a murine gene (Bcg), has been identified as a major candidate for controlling the in vivo resistant phenotype. We developed an in vitro model for expression of resistance- and susceptibility-associated alleles of bovine NRAMP1 as stable transgenes under the regulatory control of the bovineNRAMP1 promoter in the murine RAW264.7 macrophage cell line (Bcg s ) to analyze the regulation of the NRAMP1 gene and its role in macrophage function. We demonstrated that the 5′-flanking region of bovineNRAMP1, despite the lack of TATA and CAAT boxes, has a functional promoter capable of driving the expression of a transgene in murine macrophages. A polymorphism within a microsatellite in the 3′ untranslated region critically affects the expression of bovineNRAMP1 and the control of in vitro replication ofBrucella abortus but not Salmonella enterica serovar Dublin. We did not observe any differences in the production of NO by resting or gamma interferon (IFN-γ)- and IFN-γ–lipopolysaccharide (LPS)-treated transfected cell lines, yet the resistant transfected cell lines produced significantly less NO than other cell lines, following stimulation with LPS at 24 and 48 h.


mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Lia Danelishvili ◽  
Lmar Babrak ◽  
Sasha J. Rose ◽  
Jamie Everman ◽  
Luiz E. Bermudez

ABSTRACT Inhibition of apoptotic death of macrophages by Mycobacterium tuberculosis represents an important mechanism of virulence that results in pathogen survival both in vitro and in vivo. To identify M. tuberculosis virulence determinants involved in the modulation of apoptosis, we previously screened a transposon bank of mutants in human macrophages, and an M. tuberculosis clone with a nonfunctional Rv3354 gene was identified as incompetent to suppress apoptosis. Here, we show that the Rv3354 gene encodes a protein kinase that is secreted within mononuclear phagocytic cells and is required for M. tuberculosis virulence. The Rv3354 effector targets the metalloprotease (JAMM) domain within subunit 5 of the COP9 signalosome (CSN5), resulting in suppression of apoptosis and in the destabilization of CSN function and regulatory cullin-RING ubiquitin E3 enzymatic activity. Our observation suggests that alteration of the metalloprotease activity of CSN by Rv3354 possibly prevents the ubiquitin-dependent proteolysis of M. tuberculosis-secreted proteins. IMPORTANCE Macrophage protein degradation is regulated by a protein complex called a signalosome. One of the signalosomes associated with activation of ubiquitin and protein labeling for degradation was found to interact with a secreted protein from M. tuberculosis, which binds to the complex and inactivates it. The interference with the ability to inactivate bacterial proteins secreted in the phagocyte cytosol may have crucial importance for bacterial survival within the phagocyte.


2018 ◽  
Vol 115 (39) ◽  
pp. 9732-9737 ◽  
Author(s):  
Gamze Ö. Çamdere ◽  
Kristian K. Carlborg ◽  
Douglas Koshland

Cohesin is a four-subunit ATPase in the family of structural maintenance of chromosomes (SMC). Cohesin promotes sister chromatid cohesion, chromosome condensation, DNA repair, and transcription regulation. Cohesin performs these functions as a DNA tether and potentially a DNA-based motor. At least one of its DNA binding activities involves entrapment of DNA within a lumen formed by its subunits. This activity can be reconstituted in vitro by incubating cohesin with DNA, ATP, and cohesin loader. Previously we showed that a mutant form of cohesin (DE-cohesin) possesses the ability to bind and tether DNA in vivo. Using in vitro reconstitution assays, we show that DE-cohesin can form stable complexes with DNA without ATP hydrolysis. We show that wild-type cohesin with ADP aluminum fluoride (cohesinADP/AlFx) can also form stable cohesin–DNA complexes. These results suggest that an intermediate nucleotide state of cohesin, likely cohesinADP-Pi, is capable of initially dissociating one interface between cohesin subunits to allow DNA entry into a cohesin lumen and subsequently interacting with the bound DNA to stabilize DNA entrapment. We also show that cohesinADP/AlFx binding to DNA is enhanced by cohesin loader, suggesting a function for loader other than stimulating the ATPase. Finally, we show that loader remains stably bound to cohesinADP/AlFx after DNA entrapment, potentially revealing a function for loader in tethering the second DNA substrate. These results provide important clues on how SMC complexes like cohesin can function as both DNA tethers and motors.


2018 ◽  
Vol 115 (39) ◽  
pp. E9115-E9124 ◽  
Author(s):  
Tomoya Eguchi ◽  
Tomoki Kuwahara ◽  
Maria Sakurai ◽  
Tadayuki Komori ◽  
Tetta Fujimoto ◽  
...  

Leucine-rich repeat kinase 2 (LRRK2) has been associated with a variety of human diseases, including Parkinson’s disease and Crohn’s disease, whereas LRRK2 deficiency leads to accumulation of abnormal lysosomes in aged animals. However, the cellular roles and mechanisms of LRRK2-mediated lysosomal regulation have remained elusive. Here, we reveal a mechanism of stress-induced lysosomal response by LRRK2 and its target Rab GTPases. Lysosomal overload stress induced the recruitment of endogenous LRRK2 onto lysosomal membranes and activated LRRK2. An upstream adaptor Rab7L1 (Rab29) promoted the lysosomal recruitment of LRRK2. Subsequent family-wide screening of Rab GTPases that may act downstream of LRRK2 translocation revealed that Rab8a and Rab10 were specifically accumulated on overloaded lysosomes dependent on their phosphorylation by LRRK2. Rab7L1-mediated lysosomal targeting of LRRK2 attenuated the stress-induced lysosomal enlargement and promoted lysosomal secretion, whereas Rab8 stabilized by LRRK2 on stressed lysosomes suppressed lysosomal enlargement and Rab10 promoted lysosomal secretion, respectively. These effects were mediated by the recruitment of Rab8/10 effectors EHBP1 and EHBP1L1. LRRK2 deficiency augmented the chloroquine-induced lysosomal vacuolation of renal tubules in vivo. These results implicate the stress-responsive machinery composed of Rab7L1, LRRK2, phosphorylated Rab8/10, and their downstream effectors in the maintenance of lysosomal homeostasis.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Catherine A Reardon ◽  
Amulya Lingaraju ◽  
Kelly Q Schoenfelt ◽  
Guolin Zhou ◽  
Ning-Chun Liu ◽  
...  

Type 2 diabetics have a higher risk for atherosclerosis, but the mechanisms underlying the increased risk are poorly understood. Macrophages, which are activated in type 2 diabetes (T2D) and have a role in all stages of atherogenesis, are an attractive link. Our hypothesis is that T2D promotes macrophage dysfunction to promote atherosclerosis. To investigate the relationship between T2D and macrophage dysfunction, we used a proteomics approach to identify dysregulated proteins secreted from peritoneal macrophages in a diet induced mouse model of obesity and insulin resistance in the absence of hypercholesterolemia. Twenty-seven T2D responsive proteins were identified that predict defects in many of the critical functions of macrophages in atherosclerosis (e.g. decreased apoE- cholesterol efflux; decreased MFGE8 – efferocytosis, increased MMP12- matrix degradation). The macrophages from lean and obese mice were not lipid loaded, but the obese macrophages accumulated significantly more cholesterol when exposed to high levels of atherogenic lipoproteins in vitro suggesting that dysregulation of the T2D responsive proteins in diabetic mice render macrophages more susceptible to cholesterol loading. Importantly, many of these same protein changes, which were present in atherosclerotic Ldlr-/- mice with T2D, were normalized when these mice were fed non-diabetogenic hypercholesterolemic diets. Thus, foam cell formation in the presence and absence of T2D produces distinct effects on macrophage protein levels, and hence function. Further, we identify IFNγ as a mediator of the T2D responsive protein dysfunction. IFNγ, but not other cytokines, insulin or glucose, promote the T2D responsive protein dysregulation and increased susceptibility to cholesterol accumulation in vitro and the dysregulation is not observed in macrophage foam cells obtained from obese, diabetic IFNγ receptor 1 knockout animals. We also demonstrate that IFNγ can target these proteins in arterial wall macrophages in vivo . These studies suggest that IFNγ is an important mediator of macrophage dysfunction in T2D that may contribute to the enhanced cardiovascular risk in these patients.


Author(s):  
Priyanka Singh

Saffron spice also known as Crocus sativus (Saffron crocus) belongs to the family of iridaceae. Many studies have proved its potential role in disease eradication. It has been reported to possess the attributes of a sedative, an anti-asthma, an emmenagogue, an expectorant, and an adaptogenic agent. Crocin, crocetin, and safranal are the most important biochemically active ingredients that were found in different parts of the plants in varying proportions like the peels, fruits, seeds, and rind of Crocus sativus. The in vitro and in vivo studies showed that saffron has got its therapeutic implication in health management via anti-oxidant, anti-microbial, hepatoprotective, and anti-tumour activity. This review attempts to reveal the potential pharmacological properties of Crocus sativus. It also draws attention towards the use of herbs and spices in various ailments without facing the harmful side effects of chemically derived medicine.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 580 ◽  
Author(s):  
Alisa A. Shaimardanova ◽  
Kristina V. Kitaeva ◽  
Ilmira I. Abdrakhmanova ◽  
Vladislav M. Chernov ◽  
Catrin S. Rutland ◽  
...  

The development of multicistronic vectors has opened up new opportunities to address the fundamental issues of molecular and cellular biology related to the need for the simultaneous delivery and joint expression of several genes. To date, the examples of the successful use of multicistronic vectors have been described for the development of new methods of treatment of various human diseases, including cardiovascular, oncological, metabolic, autoimmune, and neurodegenerative disorders. The safety and effectiveness of the joint delivery of therapeutic genes in multicistronic vectors based on the internal ribosome entry site (IRES) and self-cleaving 2A peptides have been shown in both in vitro and in vivo experiments as well as in clinical trials. Co-expression of several genes in one vector has also been used to create animal models of various inherited diseases which are caused by mutations in several genes. Multicistronic vectors provide expression of all mutant genes, which allows the most complete mimicking disease pathogenesis. This review comprehensively discusses multicistronic vectors based on IRES nucleotide sequence and self-cleaving 2A peptides, including its features and possible application for the treatment and modeling of various human diseases.


Author(s):  
AMAL M ALOSAIMI ◽  
INES EL MANNOUBI ◽  
SAMI A ZABIN

Objective: This work aimed at synthesizing tridentates asymmetrical Schiff base ligands containing sulfur atom and using them for preparing metal complexes with the iron triad metals. The prepared compounds were assayed in vitro for antimicrobial potential and in vivo molluscicidal activity. Methods: The unsymmetrical tridentate Schiff bases (SL1, SL2, and SL3) were prepared using 2-aminothiophenol as primary amine and condensed with 2-carboxybenzaldehyde, 2-hydroxy-1-naphthaldehyde, and 7-formyl-8-hydroxyquinoline. These ligands were used in preparing metal complexes with iron triad metals. The synthesized Schiff base ligands and their corresponding metal complexes were characterized and their proposed structures were confirmed using different physical and spectroscopic analytical techniques. All ligands and their corresponding metal complexes were assayed against different bacterial and fungal strains using the agar disk-diffusion technique. The molluscicidal activity was performed according to the standard reported methods as cited in the literature and by observing the toxicity and lethal dose according to the WHO guidelines. Results: The synthesized ligands behave as tridentate (NOS) ligands and form mononuclear complexes with the general formula [M(SL)2] with an octahedral geometry around the central metal ion. Metal complexes were non-electrolytic in nature. The in vitro antibacterial and antifungal examination results showed weak activity of the ligands, and there was enhanced activity with the complexes. The in vivo molluscicidal activity of the tested compounds showed good activity. Conclusion: The targeted compounds were prepared successfully, characterized, and showed some biological activity but lower than the standard reference drugs.


Sign in / Sign up

Export Citation Format

Share Document