scholarly journals Seasonal resistome diversity and dissemination of WHO priority antibiotic-resistant pathogens in Lebanese estuaries

2021 ◽  
Author(s):  
Wadad Hobeika ◽  
Margaux Gaschet ◽  
Marie-Cecile Ploy ◽  
Elena Buelow ◽  
Dolla Karam Sarkis ◽  
...  

Anthropogenic activities are demonstrated to be the key drivers of antimicrobial resistance (AMR) dissemination in the environment. Lebanese rivers that lead to the Mediterranean Sea were sampled at estuaries sites, under high anthropogenic pressure, in spring 2017 and winter 2018 to study seasonal variation of antimicrobial-resistant bacteria (ARBs) and antimicrobial resistance genes (ARGs). Methods: A combined approach using culture techniques and high throughput qPCR identified hotspots for antimicrobial resistance and anthropogenic pressure in particular locations along the Lebanese coast. Results: Multi-resistant Gram-negative (Enterobacterales and Pseudomonas spp) and Gram-positive bacterial pathogens were isolated. A high abundance of certain ARGs (vanB, blaBIC-1, blaGES, tetM, and mcr-1) was detected in 5 Lebanese estuaries. The relative abundance of ARGs was highest in winter and areas with high anthropogenic activities and population growth with an influx of refugees. Conclusion: Qualitative analysis of ARB and the analysis of the Lebanese estuaries resistome revealed critical levels of contamination with pathogenic bacteria and provided significant information about the spread of ARGs in anthropogenically impacted estuaries.

2020 ◽  
Vol 32 ◽  
Author(s):  
Juliana Alves Resende ◽  
Vânia Lúcia da Silva ◽  
Claudio Galuppo Diniz

Abstract: From an anthropocentric perspective, aquatic environments are important to maintain health and survival, however, as they are sometimes managed based on misconception, they are considered a convergent pathway for anthropogenic residues and sanitation. Thus, it is observed that these ecosystems have been threatened by chemical pollution due to xenobiotics, especially from a more contemporary approach, by the selective pressure associated with antimicrobials. There are several studies that report the enrichment of antimicrobial resistant bacteria and mobilizable antimicrobial resistance genes in aquatic and adjacent ecosystems. From the perspective of the emerging and reemerging number of diseases related to the interplay of human, animal, and environmental factors, a new conception arose to address these issues holistically, which is known as the One Health approach. Scientific and political discourse on this conception should lead to effective action plans for preventing and controlling the spread of infectious diseases in open environment, including those impacted by anthropogenic activities. Therefore, nowadays, discussions on antimicrobial resistance are becoming broader and are requiring a multi-disciplinary view to address health and environmental challenges, which includes aquatic environment management. Water may represent one of the most important ecosystems for the in antimicrobial resistance phenomenon that arises when a dynamic and singular microbial community may be influenced by several characteristics. As antimicrobial substances do not all degrade at the same time under the same treatment, strategies concerning their removal from the environment should consider their individualized chemical characteristics.


2016 ◽  
pp. 21-24
Author(s):  
Md Kamruzzaman Siddiqui ◽  
Nazma Khatoon ◽  
Pravas Chandra Roy

Antimicrobial resistance in both pathogenic and commensal bacteria is increasing steadily. Failure of antibiotic resistant bacteria containment is responsible for this expansion. Healthcare effluent acts as the store house of harmful infectious pathogens. Potential health risk includes spreading of diseases by these pathogens and wide dissemination of antimicrobial resistance genes. The present study was carried out to investigate the multiple-drug resistance among the bacterial strains that were isolated and identified from the effluents of Jessore Medical College Hospital & Jessore Queen’s hospital private limited. Identified bacteria were E. coli , Klebsiella spp., Enterobacter spp., Proteus vulgaris and Salmonella spp.. Occurrence of E. coli and Enterobacter spp. were found to have the highest percentages and present in majority of the samples. The identified organisms antibiotic resistant pattern were analyzed by agar disc diffusion method against 6 antibiotics. Results of antibiotic susceptibility test showed that all of the isolates were multi-drug resistant (e”4). From the study, we observed that 75% of the isolates were resistant to amoxicillin, followed by Ampicillin (64%), Chloramphenicol (31%), Gentamycin (29%), Nitrofurantoin (27%) and least resistant being Ciprofloxacin 23%. Among the isolates Salmonella spp. were showed highest rate of resistance against all the used antibiotics. The result denotes that, the identified bacteria have been well exposed to the tested antimicrobials and they have established mechanisms to avoid them. Therefore, proper waste water treatment plant should be established to diminish the risk of disseminating multiple drug resistant microorganisms for the safeguard of public health.Bangladesh J Microbiol, Volume 32, Number 1-2,June-Dec 2015, pp 21-24


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 353
Author(s):  
Immacolata La Tela ◽  
Maria Francesca Peruzy ◽  
Nicola D’Alessio ◽  
Fabio Di Nocera ◽  
Francesco Casalinuovo ◽  
...  

Wild animals are potential vectors of antibiotic-resistant bacteria in the environment. The present study aimed to investigate the occurrence of antimicrobial resistance among Salmonella serovars isolated from wildlife and the environment in Italy. A total of 164 Salmonella isolates were analyzed, and six different subspecies and 64 serovars were detected. High proportions of Salmonella isolates proved resistant to streptomycin (34.1%), followed by trimethoprim-sulfamethoxazole (23.2%), tetracycline (17.7%), ciprofloxacin (14.63%) and ampicillin (11.59%). By source, the lowest level of resistance was observed in Salmonella serovars isolated from a water environment, while antimicrobial resistance was frequent in strains collected from shellfish, reptiles and birds. Multidrug-resistant strains were recovered from seafood (n = 11), mammals (n = 3) and water (n = 1). Three S. Typhimurium monophasic variant strains showed asimultaneous resistance to ampicillin, streptomycin, tetracycline and trimethoprim-sulfamethoxazole, which represents a recognized alert resistance profile for this serovar. These data indicate the environmental dissemination of resistant strains due to anthropogenic activities, which, in southern Italy, probably have a higher impact on marine ecosystems than on terrestrial ones. Moreover, as most of the animals considered in the present study are usually consumed by humans, the presence of resistant bacteria in them is a matter of great concern.


2019 ◽  
Author(s):  
Maria Fernanda Loayza Villa ◽  
Alejandro Torres ◽  
Lixin Zhang ◽  
Gabriel Trueba

Abstract Background: The use of antimicrobials in the animal industry has increased the prevalence of antibiotic resistant bacteria and antimicrobial-resistance genes which can be transferred to human microbiota through the food chain or the environment. To reduce the influx of antibiotic-resistance to the human microbiota, restrictions on antimicrobials (in food animals) have been implemented in different countries. We investigated the impact of an antimicrobial restriction on the frequency of antimicrobial-resistant bacteria in pigs (PCI 1050) from an Ecuadorian farm. Results: No differences in antimicrobial resistant coliforms or antimicrobial resistance genes (richness and abundance) were found when we compared animals fed with or without antibiotics. Nevertheless, the absence of antimicrobials in pigs didn’t impact the productive performance of animals. Conclusion: Fitness costs of antimicrobial resistance in bacteria within intestinal microbiota of animals seems to be overestimated. Avoiding antimicrobials as prophylactics in pigs fed is not enough to control maintenance and spread of antimicrobial resistance.


2020 ◽  
Vol 18 (3) ◽  
pp. 201-206
Author(s):  
Farzaneh Firoozeh ◽  
Mohammad Zibaei

In the current world, development and spread of antimicrobial resistance among bacteria have been raised and antimicrobial-resistant bacteria are one of the most important health challenges. The antimicrobial resistance genes can easily move and transfer among diverse bacterial species and strains. The human gut microbiota consists of a dense microbial population including trillions of microorganisms. Recently, studies have shown that the bacteria which make the major part of gut microbiota, harbor a variety of antimicrobial resistance genes which are called gut resistome. The transfer of resistance genes from commensal bacteria to gut-resident opportunistic bacteria may involve in the emergence of multi-drug resistant (MDR) bacteria. Thus, the main aim of the current mini-review was to study the mechanisms of exchange of antimicrobial resistance genes by commensal and opportunistic pathogenic bacteria in the human gut.


2021 ◽  
Vol 80 (3) ◽  
Author(s):  
Maria Belen Sathicq ◽  
Tomasa Sbaffi ◽  
Giulia Borgomaneiro ◽  
Andrea Di Cesare ◽  
Raffaella Sabatino

The World Health Organization considers antibiotic resistance as one of the main threats to human and other animals' health. Despite the measures used to limit the spread of antibiotic resistance, the efforts made are not enough to tackle this problem. Thus, it has become important to understand how bacteria acquire and transmit antibiotic resistant genes (ARGs), in particular in the environment, given the close connection between the latter and human and animal health, as defined by the One-Health concept. Aquatic ecosystems are often strongly impacted by anthropogenic activities, making them a source for ARGs and antibiotic resistant bacteria (ARB). Although freshwater meiofauna have been the object of active research, few studies have focused on the relationship between the spread of antibiotic resistance and these organisms. In this review, we investigated freshwater meiofauna as carriers of resistances since they play a central role in the aquatic environments and can harbor human and animal potential pathogens. We assessed if these animals could contribute to the spread of ARGs and of potentially pathogenic bacteria. Only four taxa (Rotifera, Chironomidae, Cladocera, Copepoda) were found to be the subject of studies focused on antibiotic resistance. The studies we analyzed, although with some limitations, demonstrated that ARGs and ARB can be found in these animals, and several of them showed the presence of potentially pathogenic bacteria for humans and animals within their microbiome. Thus, meiofauna can be considered a source and a reservoir, even if neglected, of ARGs and ARB for the freshwater environments. However, further studies are needed to evaluate the impact of the meiofauna on the spread and persistence of antibiotic resistance in these ecosystems.


2019 ◽  
Author(s):  
Loayza-Villa Fernanda ◽  
Torres Alejandro ◽  
Zhang Lixin ◽  
Trueba Gabriel

AbstractThe use of antimicrobials in the animal industry has increased the prevalence of antimicrobial resistant commensal bacteria in food products derived from animals, which could be associated with antimicrobial resistance in human pathogens. To reduce the influx of antibiotic resistant bacteria (and genes) to the human microbiota, restrictions on antimicrobials (in food animals) have been implemented in different countries. We investigated the impact of antimicrobial restriction in the frequency of antimicrobial resistant bacteria in pigs. No differences in antimicrobial resistance or antimicrobial resistance genes (richness or abundance) was found when we compared animals fed with and without antibiotics. Fitness costs of antimicrobial resistance in bacteria (in the field) seems to be overestimated.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Adrienn Gréta Tóth ◽  
István Csabai ◽  
Gergely Maróti ◽  
Ákos Jerzsele ◽  
Attila Dubecz ◽  
...  

AbstractAntimicrobial resistance (AMR) is a global threat gaining more and more practical significance every year. The main determinants of AMR are the antimicrobial resistance genes (ARGs). Since bacteria can share genetic components via horizontal gene transfer, even non-pathogenic bacteria may provide ARG to any pathogens which they become physically close to (e.g. in the human gut). In addition, fermented food naturally contains bacteria in high amounts. In this study, we examined the diversity of ARG content in various kefir and yoghurt samples (products, grains, bacterial strains) using a unified metagenomic approach. We found numerous ARGs of commonly used fermenting bacteria. Even with the strictest filter restrictions, we identified ARGs undermining the efficacy of aminocoumarins, aminoglycosides, carbapenems, cephalosporins, cephamycins, diaminopyrimidines, elfamycins, fluoroquinolones, fosfomycins, glycylcyclines, lincosamides, macrolides, monobactams, nitrofurans, nitroimidazoles, penams, penems, peptides, phenicols, rifamycins, tetracyclines and triclosan. In the case of gene lmrD, we detected genetic environment providing mobility of this ARG. Our findings support the theory that during the fermentation process, the ARG content of foods can grow due to bacterial multiplication. The results presented suggest that the starting culture strains of fermented foods should be monitored and selected in order to decrease the intake of ARGs via foods.


Sign in / Sign up

Export Citation Format

Share Document