scholarly journals The meiofauna as neglected carriers of antibiotic resistant and pathogenic bacteria in freshwater ecosystems

2021 ◽  
Vol 80 (3) ◽  
Author(s):  
Maria Belen Sathicq ◽  
Tomasa Sbaffi ◽  
Giulia Borgomaneiro ◽  
Andrea Di Cesare ◽  
Raffaella Sabatino

The World Health Organization considers antibiotic resistance as one of the main threats to human and other animals' health. Despite the measures used to limit the spread of antibiotic resistance, the efforts made are not enough to tackle this problem. Thus, it has become important to understand how bacteria acquire and transmit antibiotic resistant genes (ARGs), in particular in the environment, given the close connection between the latter and human and animal health, as defined by the One-Health concept. Aquatic ecosystems are often strongly impacted by anthropogenic activities, making them a source for ARGs and antibiotic resistant bacteria (ARB). Although freshwater meiofauna have been the object of active research, few studies have focused on the relationship between the spread of antibiotic resistance and these organisms. In this review, we investigated freshwater meiofauna as carriers of resistances since they play a central role in the aquatic environments and can harbor human and animal potential pathogens. We assessed if these animals could contribute to the spread of ARGs and of potentially pathogenic bacteria. Only four taxa (Rotifera, Chironomidae, Cladocera, Copepoda) were found to be the subject of studies focused on antibiotic resistance. The studies we analyzed, although with some limitations, demonstrated that ARGs and ARB can be found in these animals, and several of them showed the presence of potentially pathogenic bacteria for humans and animals within their microbiome. Thus, meiofauna can be considered a source and a reservoir, even if neglected, of ARGs and ARB for the freshwater environments. However, further studies are needed to evaluate the impact of the meiofauna on the spread and persistence of antibiotic resistance in these ecosystems.

2021 ◽  
Vol 20 (4A) ◽  
pp. 199-209
Author(s):  
Nguyen Kim Hanh ◽  
Nguyen Trinh Duc Hieu ◽  
Nguyen Minh Hieu ◽  
Vo Hai Thi ◽  
Pham Thi Mien ◽  
...  

To assess the impact of antibiotic use in aquaculture in Nha Trang bay, we conducted this study with the aim of assessing antibiotic resistance of opportunistic pathogenic bacteria isolated from water and sediment around shrimp/fish cages in the Nha Trang bay. 109 strains of Vibrio, Salmonella-Shigella and Aeromonas groups were isolated in the surrounding environment of farming areas in Dam Bay and Hon Mieu. Antimicrobial resistance test of these 109 strains showed that in the water environment in Dam Bay, TET (96.6%) and NIT (92.5%) were the two antibiotics with the highest rates of resistant bacteria while no bacteria were resistant to RIF. All 5 types of antibiotics had a statistically insignificant percentage of antibiotic-resistant bacteria in water samples at Hon Mieu, ranging from 33.3% to 68.9%. Also in the water environment, the rate of antibiotic-resistant bacteria in Dam Bay was not influenced by the distance to the cages (42.5–66.6%). Meanwhile, in Hon Mieu, the highest rate of resistant bacteria was observed at the distance of 200 m (100%) away from cages and the lowest rate at the distance of 100 m (20%). In the sediment environment around the cages, both the Dam Bay and Hon Mieu farming areas showed the highest rates of antibiotic-resistant bacteria against TET, NIF and RIF had the lowest rate of resistant bacteria. Among the total of 109 strains tested for antibiotic resistance, 2 strains labeled TCBS_HM200 m and SS_HM200 m were found to be resistant to all 5 tested antibiotics. These two strains were respectively identified as Vibrio harveyi and Oceanimonas sp.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1639 ◽  
Author(s):  
Eva Torres Sangiao ◽  
Alina Maria Holban ◽  
Mónica Cartelle Gestal

We are constantly exposed to infectious diseases, and they cause millions of deaths per year. The World Health Organization (WHO) estimates that antibiotic resistance could cause 10 million deaths per year by 2050. Multidrug-resistant bacteria are the cause of infection in at least one in three people suffering from septicemia. While antibiotics are powerful agents against infectious diseases, the alarming increase in antibiotic resistance is of great concern. Alternatives are desperately needed, and nanotechnology provides a great opportunity to develop novel approaches for the treatment of infectious diseases. One of the most important factors in the prognosis of an infection caused by an antibiotic resistant bacteria is an early and rigorous diagnosis, jointly with the use of novel therapeutic systems that can specifically target the pathogen and limit the selection of resistant strains. Nanodiamonds can be used as antimicrobial agents due to some of their properties including size, shape, and biocompatibility, which make them highly suitable for the development of efficient and tailored nanotherapies, including vaccines or drug delivery systems. In this review, we discuss the beneficial findings made in the nanodiamonds field, focusing on diagnosis and treatment of infectious diseases. We also highlight the innovative platform that nanodiamonds confer for vaccine improvement, drug delivery, and shuttle systems, as well as their role in the generation of faster and more sensitive clinical diagnosis.


Author(s):  
Belize Leite ◽  
Magda Antunes de Chaves ◽  
Athos Aramis Thopor Nunes ◽  
Louise Jank ◽  
Gertrudes Corção

Wastes arising from human activities can reach water bodies and contribute significantly to the presence of antibiotic resistant bacterial populations in aquatic environments. The objective of this study was to evaluate the cultivable antibiotic resistant bacterial populations from a coastal lagoon impacted by agriculture and urbanization activities. Water samples were collected in low and peak season and characterized regarding physicochemical variables, microbiological indicators and the presence of antimicrobial residues. In order to analyze the presence of resistant bacterial populations, the samples were grown in the presence of nalidixic acid, ceftazidime, imipenem and tetracycline. Genes associated with β-lactamic resistance (blaCTX-M-like, blaGES-like, blaOXA-51, blaOXA-23-like, blaSHV-like, blaTEM-like and blaSPM-1), class I integron and efflux systems (tetA, tetB, acrA, acrB, tolC, adeA, adeB, adeR, adeS, mexB, mexD, mexF and mexY) were analyzed by conventional in vitro amplification. Although antimicrobials residues were below the detection limit, resistant bacteria and resistance determinants - blaGES, class I integron, adeS, acrA, acrB, tolC, mexB, mexF - were present at almost all points, in both seasons and for all antimicrobials assessed. The high numbers of resistant bacteria counts observed after the antibiotic treatment were positively correlated to the urbanization effects on the Lagoon. Some resistant populations were even higher in the low season samples, indicating the importance of a systematic evaluation of antibiotic resistance on water resources.


Acta Naturae ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 34-45
Author(s):  
Olga V. Kisil ◽  
Tatiana A. Efimenko ◽  
Nina I. Gabrielyan ◽  
Olga V. Efremenkova

The spread of antibiotic resistance among pathogens represents a threat to human health around the world. In 2017, the World Health Organization published a list of 12 top-priority antibiotic-resistant pathogenic bacteria for which new effective antibiotics or new ways of treating the infections caused by them are needed. This review focuses on Acinetobacter baumannii, one of these top-priority pathogens. The pathogenic bacterium A. baumannii is one of the most frequently encountered infectious agents in the world; its clinically significant features include resistance to UV light, drying, disinfectants, and antibiotics. This review looks at the various attempts that have been made to tackle the problem of drug resistance relating to A. baumannii variants without the use of antibiotics. The potential of bacteriophages and antimicrobial peptides in the treatment of infections caused by A. baumannii in both planktonic and biofilm form is assessed. Such topics as research into the development of vaccines based on the outer membrane proteins of A. baumannii and the use of silver nanoparticles, as well as photodynamic and chelate therapy, are also covered.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 775
Author(s):  
Kezia Drane ◽  
Roger Huerlimann ◽  
Michelle Power ◽  
Anna Whelan ◽  
Ellen Ariel ◽  
...  

Dissemination of antibiotic resistance (AR) in marine environments is a global concern with a propensity to affect public health and many ecosystems worldwide. We evaluated the use of sea turtles as sentinel species for monitoring AR in marine environments. In this field, antibiotic-resistant bacteria have been commonly identified by using standard culture and sensitivity tests, leading to an overrepresentation of specific, culturable bacterial classes in the available literature. AR was detected against all major antibiotic classes, but the highest cumulative global frequency of resistance in all represented geographical sites was against the beta-lactam class by a two-fold difference compared to all other antibiotics. Wastewater facilities and turtle rehabilitation centres were associated with higher incidences of multidrug-resistant bacteria (MDRB) accounting for an average of 58% and 49% of resistant isolates, respectively. Furthermore, a relatively similar prevalence of MDRB was seen in all studied locations. These data suggest that anthropogenically driven selection pressures for the development of AR in sea turtles and marine environments are relatively similar worldwide. There is a need, however, to establish direct demonstrable associations between AR in sea turtles in their respective marine environments with wastewater facilities and other anthropogenic activities worldwide.


2018 ◽  
Vol 46 (S1) ◽  
pp. 25-31 ◽  
Author(s):  
Enrico Baraldi ◽  
Olof Lindahl ◽  
Miloje Savic ◽  
David Findlay ◽  
Christine Årdal

The World Health Organization (WHO) has published a global priority list of antibiotic-resistant bacteria to guide research and development (R&D) of new antibiotics. Every pathogen on this list requires R&D activity, but some are more attractive for private sector investments, as evidenced by the current antibacterial pipeline. A “pipeline coordinator” is a governmental/non-profit organization that closely tracks the antibacterial pipeline and actively supports R&D across all priority pathogens employing new financing tools.


2021 ◽  
Vol 6 (3) ◽  
pp. 110
Author(s):  
Godfred Saviour Kudjo Azaglo ◽  
Mohammed Khogali ◽  
Katrina Hann ◽  
John Alexis Pwamang ◽  
Emmanuel Appoh ◽  
...  

Inappropriate use of antibiotics has led to the presence of antibiotic-resistant bacteria in ambient air. There is no published information about the presence and resistance profiles of bacteria in ambient air in Ghana. We evaluated the presence and antibiotic resistance profiles of selected bacterial, environmental and meteorological characteristics and airborne bacterial counts in 12 active air quality monitoring sites (seven roadside, two industrial and three residential) in Accra in February 2020. Roadside sites had the highest median temperature, relative humidity, wind speed and PM10 concentrations, and median airborne bacterial counts in roadside sites (115,000 CFU/m3) were higher compared with industrial (35,150 CFU/m3) and residential sites (1210 CFU/m3). Bacillus species were isolated in all samples and none were antibiotic resistant. There were, however, Pseudomonas aeruginosa, Escherichia coli, Pseudomonas species, non-hemolytic Streptococci, Coliforms and Staphylococci species, of which six (50%) showed mono-resistance or multidrug resistance to four antibiotics (penicillin, ampicillin, ciprofloxacin and ceftriaxone). There was a positive correlation between PM10 concentrations and airborne bacterial counts (rs = 0.72), but no correlations were found between PM10 concentrations and the pathogenic bacteria nor their antibiotic resistance. We call for the expansion of surveillance of ambient air to other cities of Ghana to obtain nationally representative information.


2020 ◽  
Vol 8 (9) ◽  
pp. 1425
Author(s):  
Lara Pérez-Etayo ◽  
David González ◽  
José Leiva ◽  
Ana Isabel Vitas

Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant “priority pathogens” in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain–South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas.


1999 ◽  
Vol 62 (6) ◽  
pp. 615-618 ◽  
Author(s):  
THUREYAH MANIE ◽  
VOLKER S. BRÖZEL ◽  
WALTER J. VEITH ◽  
PIETER A. GOUWS

The administration of subtherapeutic doses of antibiotics to livestock introduces selective pressures that may lead to the emergence and dissemination of resistant bacteria. This study determined the antibiotic-resistance spectra of the microbial flora found on freshly slaughtered and retail beef and in unpasteurized and pasteurized packaged milk. Staphylococci, Enterobacteriaceae, and isolates from total aerobic plate counts were tested for resistance to vancomycin, streptomycin, methicillin, tetracycline, and gentamicin using the disc diffusion susceptibility test and resistance to penicillin was determined by using oxacillin. A larger proportion of resistance to most antibiotics, except for vancomycin, was displayed by isolates from abattoir samples. The incidence of multiple antibiotic resistance (MAR) pathogenic bacteria is also higher in the abattoir. Resistance genes lost because of lack of selective pressure or resistant flora being replaced by more sensitive flora during processing is the reason for the lower incidence of MAR pathogenic bacteria among retail samples. These resistant bacteria can be transferred to humans through the consumption of rare or raw beef and unpasteurized milk, thus rendering the resultant food-related infections difficult to treat. The present findings clearly demonstrate that antibiotic-resistant bacteria in beef and milk pose a serious problem in South Africa.


Sign in / Sign up

Export Citation Format

Share Document