scholarly journals Human TLR4 and noncanonical inflammasome differ in their ability to respond to distinct lipid A variants

2021 ◽  
Author(s):  
Jasmine Alexander-Floyd ◽  
Antonia R. Bass ◽  
Erin M. Harberts ◽  
Daniel Grubaugh ◽  
Joseph D. Buxbaum ◽  
...  

Detection of Gram-negative bacterial lipid A by the extracellular sensor, MD-2/TLR4 or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically the phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all of the examined tetra-, penta-, and hexa-acylated LOS variants activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation; however, human macrophages required both lipid A and the core oligosaccharide to mount a robust CASP4/5 inflammasome response. Our findings show that human TLR4 and CASP4/5 detect both shared and non-overlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A, thereby constraining the ability of pathogens to evade innate immune detection.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Johnny X. Huang ◽  
Mohammad A. K. Azad ◽  
Elizabeth Yuriev ◽  
Mark A. Baker ◽  
Roger L. Nation ◽  
...  

The ability of AGP to bind circulating lipopolysaccharide (LPS) in plasma is believed to help reduce the proinflammatory effect of bacterial lipid A molecules. Here, for the first time we have characterized human AGP binding characteristics of the LPS from a number of pathogenic Gram-negative bacteria:Escherichia coli,Salmonella typhimurium,Klebsiella pneumonia,Pseudomonas aeruginosa, andSerratia marcescens. The binding affinity and structure activity relationships (SAR) of the AGP-LPS interactions were characterized by surface plasma resonance (SPR). In order to dissect the contribution of the lipid A, core oligosaccharide andO-antigen polysaccharide components of LPS, the AGP binding affinity of LPS from smooth strains, were compared to lipid A, Kdo2-lipid A,Ra,Rd, andRerough LPS mutants. The SAR analysis enabled by the binding data suggested that, in addition to the important role played by the lipid A and core components of LPS, it is predominately the unique species- and strain-specific carbohydrate structure of theO-antigen polysaccharide that largely determines the binding affinity for AGP. Together, these data are consistent with the role of AGP in the binding and transport of LPS in plasma during acute-phase inflammatory responses to invading Gram-negative bacteria.


2021 ◽  
Author(s):  
Erin M Harberts ◽  
Daniel Grubaugh ◽  
Daniel C. Akuma ◽  
Sunny Shin ◽  
Robert K Ernst ◽  
...  

Immune sensing of the Gram-negative bacterial membrane glycolipid lipopolysaccharide (LPS) is both a critical component of host defense against Gram-negative bacterial infection, and a contributor to hyper-inflammatory response, leading to sepsis and death. Innate immune activation by LPS is due to the lipid A moiety, an acylated di-glucosamine molecule that can activate inflammatory responses via the extracellular sensor TLR4/MD2 or the cytosolic sensor caspase-11 (Casp11). The number and length of acyl chains present on bacterial lipid A structures vary across bacterial species and strains, which affects the magnitude of TLR4 and Casp11 activation. TLR4 and Casp11 are thought to respond similarly to various lipid A structures, as tetra-acylated lipid A structures do not activate either sensor, whereas hexa-acylated structures activate both sensors. However, direct analysis of extracellular and cytosolic responses to the same sources and preparations of LPS/lipid A structures have been limited, and the precise features of lipid A that determine the differential activation of each receptor remain poorly defined. To address this question, we used rationally engineered lipid A isolated from a series of bacterial acyl-transferase mutants that produce novel, structurally defined molecules. Intriguingly, we find that the location of specific secondary acyl chains on lipid A resulted in differential recognition by TLR4- or Casp11, providing new insight into the structural features of lipid A required to activate either TLR4- or Casp11. Our findings indicate that TLR4 and Casp11 sense non-overlapping areas of lipid A chemical space, thereby constraining the ability of Gram-negative pathogens to evade innate immunity.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chia-Ching Lin ◽  
Yi-Ru Shen ◽  
Chi-Chih Chang ◽  
Xiang-Yi Guo ◽  
Yun-Yun Young ◽  
...  

AbstractDifferent levels of regulatory mechanisms, including posttranscriptional regulation, are needed to elaborately regulate inflammatory responses to prevent harmful effects. Terminal uridyltransferase 7 (TUT7) controls RNA stability by adding uridines to its 3′ ends, but its function in innate immune response remains obscure. Here we reveal that TLR4 activation induces TUT7, which in turn selectively regulates the production of a subset of cytokines, including Interleukin 6 (IL-6). TUT7 regulates IL-6 expression by controlling ribonuclease Regnase-1 mRNA (encoded by Zc3h12a gene) stability. Mechanistically, TLR4 activation causes TUT7 to bind directly to the stem-loop structure on Zc3h12a 3′-UTR, thereby promotes Zc3h12a uridylation and degradation. Zc3h12a from LPS-treated TUT7-sufficient macrophages possesses increased oligo-uridylated ends with shorter poly(A) tails, whereas oligo-uridylated Zc3h12a is significantly reduced in Tut7-/- cells after TLR4 activation. Together, our findings reveal the functional role of TUT7 in sculpting TLR4-driven responses by modulating mRNA stability of a selected set of inflammatory mediators.


2018 ◽  
Vol 10 (464) ◽  
pp. eaal0033 ◽  
Author(s):  
Ahsan R. Akram ◽  
Sunay V. Chankeshwara ◽  
Emma Scholefield ◽  
Tashfeen Aslam ◽  
Neil McDonald ◽  
...  

Respiratory infections in mechanically ventilated patients caused by Gram-negative bacteria are a major cause of morbidity. Rapid and unequivocal determination of the presence, localization, and abundance of bacteria is critical for positive resolution of the infections and could be used for patient stratification and for monitoring treatment efficacy. Here, we developed an in situ approach to visualize Gram-negative bacterial species and cellular infiltrates in distal human lungs in real time. We used optical endomicroscopy to visualize a water-soluble optical imaging probe based on the antimicrobial peptide polymyxin conjugated to an environmentally sensitive fluorophore. The probe was chemically stable and nontoxic and, after in-human intrapulmonary microdosing, enabled the specific detection of Gram-negative bacteria in distal human airways and alveoli within minutes. The results suggest that pulmonary molecular imaging using a topically administered fluorescent probe targeting bacterial lipid A is safe and practical, enabling rapid in situ identification of Gram-negative bacteria in humans.


2019 ◽  
Vol 201 (13) ◽  
Author(s):  
Krista M. Armbruster ◽  
Gloria Komazin ◽  
Timothy C. Meredith

ABSTRACT Bacterial lipoproteins are globular proteins anchored to the extracytoplasmic surfaces of cell membranes through lipidation at a conserved N-terminal cysteine. Lipoproteins contribute to an array of important cellular functions for bacteria, as well as being a focal point for innate immune system recognition through binding to Toll-like receptor 2 (TLR2) heterodimer complexes. Although lipoproteins are conserved among nearly all classes of bacteria, the presence and type of α-amino-linked acyl chain are highly variable and even strain specific within a given bacterial species. The reason for lyso-lipoprotein formation and N-acylation variability in general is presently not fully understood. In Enterococcus faecalis, lipoproteins are anchored by an N-acyl-S-monoacyl-glyceryl cysteine (lyso form) moiety installed by a chromosomally encoded lipoprotein intramolecular transacylase (Lit). Here, we describe a mobile genetic element common to environmental isolates of Listeria monocytogenes and Enterococcus spp. encoding a functional Lit ortholog (Lit2) that is cotranscribed with several well-established copper resistance determinants. Expression of Lit2 is tightly regulated, and induction by copper converts lipoproteins from the diacylglycerol-modified form characteristic of L. monocytogenes type strains to the α-amino-modified lyso form observed in E. faecalis. Conversion to the lyso form through either copper addition to media or constitutive expression of lit2 decreases TLR2 recognition when using an activated NF-κB secreted embryonic alkaline phosphatase reporter assay. While lyso formation significantly diminishes TLR2 recognition, lyso-modified lipoprotein is still predominantly recognized by the TLR2/TLR6 heterodimer. IMPORTANCE The induction of lipoprotein N-terminal remodeling in response to environmental copper in Gram-positive bacteria suggests a more general role in bacterial cell envelope physiology. N-terminal modification by lyso formation, in particular, simultaneously modulates the TLR2 response in direct comparison to their diacylglycerol-modified precursors. Thus, use of copper as a frontline antimicrobial control agent and ensuing selection raises the potential of diminished innate immune sensing and enhanced bacterial virulence.


2004 ◽  
Vol 72 (12) ◽  
pp. 7124-7130 ◽  
Author(s):  
Lyndsay M. Schaeffer ◽  
Francis X. McCormack ◽  
Huixing Wu ◽  
Alison A. Weiss

ABSTRACT Surfactant proteins A (SP-A) and D (SP-D) play an important role in the innate immune defenses of the respiratory tract. SP-A binds to the lipid A region of lipopolysaccharide (LPS), and SP-D binds to the core oligosaccharide region. Both proteins induce aggregation, act as opsonins for neutrophils and macrophages, and have direct antimicrobial activity. Bordetella pertussis LPS has a branched core structure and a nonrepeating terminal trisaccharide. Bordetella bronchiseptica LPS has the same structure, but lipid A is palmitoylated and there is a repeating O-antigen polysaccharide. The ability of SP-A and SP-D to agglutinate and permeabilize wild-type and LPS mutants of B. pertussis and B. bronchiseptica was examined. Previously, wild-type B. pertussis was shown to resist the effects of SP-A; however, LPS mutants lacking the terminal trisaccharide were susceptible to SP-A. In this study, SP-A was found to aggregate and permeabilize a B. bronchiseptica mutant lacking the terminal trisaccharide, while wild-type B. bronchiseptica and mutants lacking only the palmitoyl transferase or O antigen were resistant to SP-A. Wild-type B. pertussis and B. bronchiseptica were both resistant to SP-D; however, LPS mutants of either strain lacking the terminal trisaccharide were aggregated and permeabilized by SP-D. We conclude that the terminal trisaccharide protects Bordetella species from the bactericidal functions of SP-A and SP-D. The O antigen and palmitoylated lipid A of B. bronchiseptica play no role in this resistance.


2015 ◽  
Vol 25 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Farzad Badmasti ◽  
Fereshteh Shahcheraghi ◽  
Seyed Davar Siadat ◽  
Saeid Bouzari ◽  
Soheila Ajdary ◽  
...  

The lipopolysaccharide (LPS) of <i>Acinetobacter baumannii</i> is a potent stimulator of proinflammatory cytokines, such as interleukin-6 (IL-6). The 3-O-deacylase (PagL)-modifying enzyme that removes the 3-O-linked acyl chain from the disaccharide backbone of lipid A provides the opportunity to develop a new therapeutic compound that could reduce detrimental inflammatory responses. The plasmid pMMB66EH-PagL obtained by recombinant DNA technology was electroporated into <i>A. baumannii</i> ATCC 19606. Compared with wild-type LPS, outer membrane vesicles and inactivated whole cells of engineered bacteria had a statistically significant decreased ability to produce IL-6. Structural analysis of lipid A by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed that the profile of lipid A fractions under PagL expression was changed. Taken together, our data showed that recombinant penta-acylated lipid A had less immunoreactivity and that the tetra-acylated version of lipid A with TLR4 antagonist activity decreased the induction of IL-6 production in the murine macrophage cell line J774 A.1.


2018 ◽  
Vol 14 ◽  
pp. 25-53 ◽  
Author(s):  
Alla Zamyatina

The immediate immune response to infection by Gram-negative bacteria depends on the structure of a lipopolysaccharide (LPS, also known as endotoxin), a complex glycolipid constituting the outer leaflet of the bacterial outer membrane. Recognition of picomolar quantities of pathogenic LPS by the germ-line encoded Toll-like Receptor 4 (TLR4) complex triggers the intracellular pro-inflammatory signaling cascade leading to the expression of cytokines, chemokines, prostaglandins and reactive oxygen species which manifest an acute inflammatory response to infection. The “endotoxic principle” of LPS resides in its amphiphilic membrane-bound fragment glycophospholipid lipid A which directly binds to the TLR4·MD-2 receptor complex. The lipid A content of LPS comprises a complex mixture of structural homologs varying in the acylation pattern, the length of the (R)-3-hydroxyacyl- and (R)-3-acyloxyacyl long-chain residues and in the phosphorylation status of the β(1→6)-linked diglucosamine backbone. The structural heterogeneity of the lipid A isolates obtained from bacterial cultures as well as possible contamination with other pro-inflammatory bacterial components makes it difficult to obtain unambiguous immunobiological data correlating specific structural features of lipid A with its endotoxic activity. Advanced understanding of the therapeutic significance of the TLR4-mediated modulation of the innate immune signaling and the central role of lipid A in the recognition of LPS by the innate immune system has led to a demand for well-defined materials for biological studies. Since effective synthetic chemistry is a prerequisite for the availability of homogeneous structurally distinct lipid A, the development of divergent and reproducible approaches for the synthesis of various types of lipid A has become a subject of considerable importance. This review focuses on recent advances in synthetic methodologies toward LPS substructures comprising lipid A and describes the synthesis and immunobiological properties of representative lipid A variants corresponding to different bacterial species. The main criteria for the choice of orthogonal protecting groups for hydroxyl and amino functions of synthetically assembled β(1→6)-linked diglucosamine backbone of lipid A which allows for a stepwise introduction of multiple functional groups into the molecule are discussed. Thorough consideration is also given to the synthesis of 1,1′-glycosyl phosphodiesters comprising partial structures of 4-amino-4-deoxy-β-L-arabinose modifiedBurkholderialipid A and galactosamine-modifiedFrancisella lipid A. Particular emphasis is put on the stereoselective construction of binary glycosyl phosphodiester fragments connecting the anomeric centers of two aminosugars as well as on the advanced P(III)-phosphorus chemistry behind the assembly of zwitterionic double glycosyl phosphodiesters.


2011 ◽  
Vol 79 (12) ◽  
pp. 5027-5038 ◽  
Author(s):  
Qingke Kong ◽  
David A. Six ◽  
Qing Liu ◽  
Lillian Gu ◽  
Kenneth L. Roland ◽  
...  

ABSTRACTLipopolysaccharide (LPS), composed of lipid A, core, and O-antigen, is a major virulence factor ofSalmonella entericaserovar Typhimurium, with lipid A being a major stimulator to induce the proinflammatory response via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. WhileSalmonella msbBmutants lacking the myristate chain in lipid A were investigated widely as an anticancer vaccine, inclusion of themsbBmutation in aSalmonellavaccine to deliver heterologous antigens has not yet been investigated. We introduced themsbBmutation alone or in combination with mutations in other lipid A acyl chain modification genes encoding PagL, PagP, and LpxR into wild-typeS. entericaserovar Typhimurium. ThemsbBmutation reduced virulence, while thepagL,pagP, andlpxRmutations did not affect virulence in themsbBmutant background when administered orally to BALB/c mice. Also, all mutants exhibited sensitivity to polymyxin B but did not display sensitivity to deoxycholate. LPS derived frommsbBmutants induced less inflammatory responses in human Mono Mac 6 and murine macrophage RAW264.7 cellsin vitro. However, anmsbBmutant did not decrease the induction of inflammatory responses in mice compared to the levels induced by the wild-type strain, whereas anmsbB pagPmutant induced less inflammatory responsesin vivo. The mutations were moved to an attenuatedSalmonellavaccine strain to evaluate their effects on immunogenicity. Lipid A modification caused by themsbBmutation alone and in combination withpagL,pagP, andlpxRmutations led to higher IgA production in the vaginal tract but still retained the same IgG titer level in serum to PspA, a test antigen fromStreptococcus pneumoniae, and to outer membrane proteins (OMPs) fromSalmonella.


2021 ◽  
Vol 6 (57) ◽  
pp. eabe0531
Author(s):  
Anna E. Gauthier ◽  
Courtney E. Chandler ◽  
Valentina Poli ◽  
Francesca M. Gardner ◽  
Aranteiti Tekiau ◽  
...  

The assumption of near-universal bacterial detection by pattern recognition receptors is a foundation of immunology. The limits of this pattern recognition concept, however, remain undefined. As a test of this hypothesis, we determined whether mammalian cells can recognize bacteria that they have never had the natural opportunity to encounter. These bacteria were cultivated from the deep Pacific Ocean, where the genus Moritella was identified as a common constituent of the culturable microbiota. Most deep-sea bacteria contained cell wall lipopolysaccharide (LPS) structures that were expected to be immunostimulatory, and some deep-sea bacteria activated inflammatory responses from mammalian LPS receptors. However, LPS receptors were unable to detect 80% of deep-sea bacteria examined, with LPS acyl chain length being identified as a potential determinant of immunosilence. The inability of immune receptors to detect most bacteria from a different ecosystem suggests that pattern recognition strategies may be defined locally, not globally.


Sign in / Sign up

Export Citation Format

Share Document