scholarly journals Towards mechanistic models of mutational effects: Deep Learning on Alzheimer's Aβ peptide

2021 ◽  
Author(s):  
Bo Wang ◽  
Eric R Gamazon

Alzheimer's Disease (AD) is a debilitating form of dementia with a high prevalence in the global population and a large burden on the community and health care systems. AD's complex pathobiology consists of extracellular β-amyloid deposition and intracellular hyperphosphorylated tau. Comprehensive mutational analyses can generate a wealth of knowledge about protein properties and enable crucial insights into molecular mechanisms of disease. Deep Mutational Scanning (DMS) has enabled multiplexed measurement of mutational effects on protein properties, including kinematics and self-organization, with unprecedented resolution. However, potential bottlenecks of DMS characterization include experimental design, data quality, and the depth of mutational coverage. Here, we apply Deep Learning to comprehensively model the mutational effect of the AD-associated peptide Aβ42 on aggregation-related biochemical traits from DMS measurements. Among tested neural network architectures, Convolutional Neural Networks (ConvNets) and Recurrent Neural Networks (RNN) are found to be the most cost-effective models with robust high performance even under insufficiently-sampled DMS studies. While sequence features are essential for satisfactory prediction from neural networks, geometric-structural features further enhance the prediction performance. Notably, we demonstrate how mechanistic insights into phenotype may be extracted from the neural networks themselves suitably designed. This methodological benefit is particularly relevant for biochemical systems displaying a strong coupling between structure and phenotype such as the conformation of Aβ42 aggregate and nucleation, as shown here using a Graph Convolutional Neural Network (GCN) developed from the protein atomic structure input. In addition to accurate imputation of missing values (which ranged up to 55% of all phenotype values at key residues), the mutationally-defined nucleation phenotype generated from a GCN shows improved resolution for identifying known disease-causing mutations relative to the original DMS phenotype. Our study suggests that neural network derived sequence-phenotype mapping can be exploited not only to provide direct support for protein engineering or genome editing but also to facilitate therapeutic design with the gained perspectives from biological modeling.

2020 ◽  
Vol 11 (28) ◽  
pp. 7335-7348 ◽  
Author(s):  
Timothy E. H. Allen ◽  
Andrew J. Wedlake ◽  
Elena Gelžinytė ◽  
Charles Gong ◽  
Jonathan M. Goodman ◽  
...  

Deep learning neural networks, constructed for the prediction of chemical binding at 79 pharmacologically important human biological targets, show extremely high performance on test data (accuracy 92.2 ± 4.2%, MCC 0.814 ± 0.093, ROC-AUC 0.96 ± 0.04).


2018 ◽  
Vol 246 ◽  
pp. 03044 ◽  
Author(s):  
Guozhao Zeng ◽  
Xiao Hu ◽  
Yueyue Chen

Convolutional Neural Networks (CNNs) have become the most advanced algorithms for deep learning. They are widely used in image processing, object detection and automatic translation. As the demand for CNNs continues to increase, the platforms on which they are deployed continue to expand. As an excellent low-power, high-performance, embedded solution, Digital Signal Processor (DSP) is used frequently in many key areas. This paper attempts to deploy the CNN to Texas Instruments (TI)’s TMS320C6678 multi-core DSP and optimize the main operations (convolution) to accommodate the DSP structure. The efficiency of the improved convolution operation has increased by tens of times.


2021 ◽  
Vol 17 (2) ◽  
pp. 1-23
Author(s):  
Saman Biookaghazadeh ◽  
Pravin Kumar Ravi ◽  
Ming Zhao

High-throughput and low-latency Convolutional Neural Network (CNN) inference is increasingly important for many cloud- and edge-computing applications. FPGA-based acceleration of CNN inference has demonstrated various benefits compared to other high-performance devices such as GPGPUs. Current FPGA CNN-acceleration solutions are based on a single FPGA design, which are limited by the available resources on an FPGA. In addition, they can only accelerate conventional 2D neural networks. To address these limitations, we present a generic multi-FPGA solution, written in OpenCL, which can accelerate more complex CNNs (e.g., C3D CNN) and achieve a near linear speedup with respect to the available single-FPGA solutions. The design is built upon the Intel Deep Learning Accelerator architecture, with three extensions. First, it includes updates for better area efficiency (up to 25%) and higher performance (up to 24%). Second, it supports 3D convolutions for more challenging applications such as video learning. Third, it supports multi-FPGA communication for higher inference throughput. The results show that utilizing multiple FPGAs can linearly increase the overall bandwidth while maintaining the same end-to-end latency. In addition, the design can outperform other FPGA 2D accelerators by up to 8.4 times and 3D accelerators by up to 1.7 times.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012016
Author(s):  
Sunil Pandey ◽  
Naresh Kumar Nagwani ◽  
Shrish Verma

Abstract The training of deep learning convolutional neural networks is extremely compute intensive and takes long times for completion, on all except small datasets. This is a major limitation inhibiting the widespread adoption of convolutional neural networks in real world applications despite their better image classification performance in comparison with other techniques. Multidirectional research and development efforts are therefore being pursued with the objective of boosting the computational performance of convolutional neural networks. Development of parallel and scalable deep learning convolutional neural network implementations for multisystem high performance computing architectures is important in this background. Prior analysis based on computational experiments indicates that a combination of pipeline and task parallelism results in significant convolutional neural network performance gains of up to 18 times. This paper discusses the aspects which are important from the perspective of implementation of parallel and scalable convolutional neural networks on central processing unit based multisystem high performance computing architectures including computational pipelines, convolutional neural networks, convolutional neural network pipelines, multisystem high performance computing architectures and parallel programming models.


Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 223
Author(s):  
Yen-Ling Tai ◽  
Shin-Jhe Huang ◽  
Chien-Chang Chen ◽  
Henry Horng-Shing Lu

Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naively pursuing high-cost hardware would probably drag the technical development of deep learning methods. In the article, we thus establish a new preprocessing method to reduce the computational complexity of the neural networks. Inspired by the band theory of solids in physics, we map the image space into a noninteraction physical system isomorphically and then treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a correction function for the normalization of the voxel intensity and as a filter of insignificant cluster components. The filtered clusters at the circumstance can delineate the morphological heterogeneity of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable performance to other employed preprocessing methods. By comparing to the conventional z-score normalization function and the Gamma correction function, the proposed algorithm can save at least 38% of computational time cost under a low-cost hardware architecture. Even though the correction function of global histogram equalization has the lowest computational time among the employed correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of image augmentation and segmentation.


2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1614
Author(s):  
Jonghun Jeong ◽  
Jong Sung Park ◽  
Hoeseok Yang

Recently, the necessity to run high-performance neural networks (NN) is increasing even in resource-constrained embedded systems such as wearable devices. However, due to the high computational and memory requirements of the NN applications, it is typically infeasible to execute them on a single device. Instead, it has been proposed to run a single NN application cooperatively on top of multiple devices, a so-called distributed neural network. In the distributed neural network, workloads of a single big NN application are distributed over multiple tiny devices. While the computation overhead could effectively be alleviated by this approach, the existing distributed NN techniques, such as MoDNN, still suffer from large traffics between the devices and vulnerability to communication failures. In order to get rid of such big communication overheads, a knowledge distillation based distributed NN, called Network of Neural Networks (NoNN), was proposed, which partitions the filters in the final convolutional layer of the original NN into multiple independent subsets and derives smaller NNs out of each subset. However, NoNN also has limitations in that the partitioning result may be unbalanced and it considerably compromises the correlation between filters in the original NN, which may result in an unacceptable accuracy degradation in case of communication failure. In this paper, in order to overcome these issues, we propose to enhance the partitioning strategy of NoNN in two aspects. First, we enhance the redundancy of the filters that are used to derive multiple smaller NNs by means of averaging to increase the immunity of the distributed NN to communication failure. Second, we propose a novel partitioning technique, modified from Eigenvector-based partitioning, to preserve the correlation between filters as much as possible while keeping the consistent number of filters distributed to each device. Throughout extensive experiments with the CIFAR-100 (Canadian Institute For Advanced Research-100) dataset, it has been observed that the proposed approach maintains high inference accuracy (over 70%, 1.53× improvement over the state-of-the-art approach), on average, even when a half of eight devices in a distributed NN fail to deliver their partial inference results.


2021 ◽  
pp. 1-11
Author(s):  
Oscar Herrera ◽  
Belém Priego

Traditionally, a few activation functions have been considered in neural networks, including bounded functions such as threshold, sigmoidal and hyperbolic-tangent, as well as unbounded ReLU, GELU, and Soft-plus, among other functions for deep learning, but the search for new activation functions still being an open research area. In this paper, wavelets are reconsidered as activation functions in neural networks and the performance of Gaussian family wavelets (first, second and third derivatives) are studied together with other functions available in Keras-Tensorflow. Experimental results show how the combination of these activation functions can improve the performance and supports the idea of extending the list of activation functions to wavelets which can be available in high performance platforms.


Sign in / Sign up

Export Citation Format

Share Document