scholarly journals Leveraging global multi-ancestry meta-analysis in the study of Idiopathic Pulmonary Fibrosis genetics

Author(s):  
Juulia J. Partanen ◽  
Paavo Häppölä ◽  
Wei Zhou ◽  
Arto Aleksanteri Lehisto ◽  
Mari Ainola ◽  
...  

AbstractThe research of rare and devastating orphan diseases such as Idiopathic Pulmonary Fibrosis (IPF) has been limited by the rarity of the disease itself. The prognosis is poor – the prevalence of IPF is only ∼4-times the incidence of the condition, limiting the recruitment of patients to trials and studies of the underlying biology of the disease. However, global biobanking efforts can dramatically alter the future of IPF research.Here we describe the largest meta-analysis of IPF, with 8,492 patients and 1,355,819 population controls from 13 biobanks around the globe. Finally, we combine the meta-analysis with the largest available meta-analysis of IPF so far, reaching 11,160 patients and 1,364,410 population controls in analysis.We identify seven novel genome-wide significant loci, only one of which would have been identified if the analysis had been limited to European ancestry individuals. We observe notable pleiotropy across IPF susceptibility and severe COVID-19 infection, beyond what is known to date. We also note a significant unexplained sex-heterogeneity effect at the strongest IPF locus MUC5B.

2021 ◽  
Author(s):  
Richard J Allen ◽  
Amy Stockwell ◽  
Justin M Oldham ◽  
Beatriz Guillen-Guio ◽  
Carlos Flores ◽  
...  

AbstractIdiopathic pulmonary fibrosis (IPF) is a chronic lung condition with poor survival times. We previously published a genome-wide meta-analysis of IPF risk across three studies with independent replication of associated variants in two additional studies. To maximise power and to generate more accurate effect size estimates, we performed a genome-wide meta-analysis across all five studies included in the previous IPF risk GWAS. We utilised the distribution of effect sizes across the five studies to assess the replicability of the results and identified five robust novel genetic association signals implicating mTOR signalling, telomere maintenance and spindle assembly genes in IPF risk.


Author(s):  
Elena Aloisio ◽  
Federica Braga ◽  
Chiara Puricelli ◽  
Mauro Panteghini

Abstract Objectives Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial disease with limited therapeutic options. The measurement of Krebs von den Lungen-6 (KL-6) glycoprotein has been proposed for evaluating the risk of IPF progression and predicting patient prognosis, but the robustness of available evidence is unclear. Methods We searched Medline and Embase databases for peer-reviewed literature from inception to April 2020. Original articles investigating KL-6 as prognostic marker for IPF were retrieved. Considered outcomes were the risk of developing acute exacerbation (AE) and patient survival. Meta-analysis of selected studies was conducted, and quantitative data were uniformed as odds ratio (OR) or hazard ratio (HR) estimates, with corresponding 95% confidence intervals (CI). Results Twenty-six studies were included in the systematic review and 14 were finally meta-analysed. For AE development, the pooled OR (seven studies) for KL-6 was 2.72 (CI 1.22–6.06; p=0.015). However, a high degree of heterogeneity (I2=85.6%) was found among selected studies. Using data from three studies reporting binary data, a pooled sensitivity of 72% (CI 60–82%) and a specificity of 60% (CI 52–68%) were found for KL-6 measurement in detecting insurgence of AE in IPF patients. Pooled HR (seven studies) for mortality prediction was 1.009 (CI 0.983–1.036; p=0.505). Conclusions Although our meta-analysis suggested that IPF patients with increased KL-6 concentrations had a significant increased risk of developing AE, the detection power of the evaluated biomarker is limited. Furthermore, no relationship between biomarker concentrations and mortality was found. Caution is also needed when extending obtained results to non-Asian populations.


BMJ Open ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. e050004
Author(s):  
Wenjuan Wu ◽  
Lingxiao Qiu ◽  
Jizhen Wu ◽  
Xueya Liu ◽  
Guojun Zhang

ObjectivesIdiopathic pulmonary fibrosis (IPF) has been defined as a distinctive type of chronic fibrotic disease, characterised by a progressive decline in lung function and a common histological pattern of interstitial pneumonia. To analyse the efficacy and safety of pirfenidone in the treatment of IPF, a systematic review and meta-analysis was performed.DesignThis is a meta-analysis study.ParticipantsPatients were diagnosed as IPF.InterventionsUse of pirfenidone.Primary and secondary outcomeProgression-free survival (PFS), acute exacerbation and worsening of IPF and Impact on adverse events.MeasuresThe inverse variance method for the random-effects model was used to summarise the dichotomous outcomes, risk ratios and 95% CIs.ResultsA total of 9 randomised controlled trials with 1011 participants receiving pirfenidone and 912 controls receiving placebo were summarised. The pooled result suggested a statistically significant difference inall-cause mortality after pirfenidone use, with a summarised relative ratio of 0.51 (p<0.01). Longer PFS was observed in patients receiving pirfenidone compared with those who were given placebo (p<0.01). The IPF groups presented a high incidence of adverse events with a pooled relative ratio of 3.89 (p<0.01).ConclusionsPirfenidone can provide survival benefit for patients with IPF. Pirfenidone treatment was also associated with a longer PFS, a lower incidence of acute exacerbation and worsening of IPF.


2021 ◽  
Author(s):  
Richard J Allen ◽  
Beatriz Guillen-Guio ◽  
Emma Croot ◽  
Luke M Kraven ◽  
Samuel Moss ◽  
...  

AbstractGenome-wide association studies (GWAS) of coronavirus disease 2019 (COVID-19) and idiopathic pulmonary fibrosis (IPF) have identified genetic loci associated with both traits, suggesting possible shared biological mechanisms. Using updated GWAS of COVID-19 and IPF, we evaluated the genetic overlap between these two diseases and identified four genetic loci (including one novel) with likely shared causal variants between severe COVID-19 and IPF. Although there was a positive genetic correlation between COVID-19 and IPF, two of these four shared genetic loci had an opposite direction of effect. IPF-associated genetic variants related to telomere dysfunction and spindle assembly showed no association with COVID-19 phenotypes. Together, these results suggest there are both shared and distinct biological processes driving IPF and severe COVID-19 phenotypes.


2020 ◽  
Author(s):  
Katherina C. Chua ◽  
Chenling Xiong ◽  
Carol Ho ◽  
Taisei Mushiroda ◽  
Chen Jiang ◽  
...  

AbstractMicrotubule targeting agents (MTAs) are anticancer therapies commonly prescribed for breast cancer and other solid tumors. Sensory peripheral neuropathy (PN) is the major dose-limiting toxicity for MTAs and can limit clinical efficacy. The current pharmacogenomic study aimed to identify genetic variations that explain patient susceptibility and drive mechanisms underlying development of MTA-induced PN. A meta-analysis of genome-wide association studies (GWAS) from two clinical cohorts treated with MTAs (CALGB 40502 and CALGB 40101) was conducted using a Cox regression model with cumulative dose to first instance of grade 2 or higher PN. Summary statistics from a GWAS of European subjects (n = 469) in CALGB 40502 that estimated cause-specific risk of PN were meta-analyzed with those from a previously published GWAS of European ancestry (n = 855) from CALGB 40101 that estimated the risk of PN. Novel single nucleotide polymorphisms in an enhancer region downstream of sphingosine-1-phosphate receptor 1 (S1PR1 encoding S1PR1; e.g., rs74497159, βCALGB40101 per allele log hazard ratio (95% CI) = 0.591 (0.254 - 0.928), βCALGB40502 per allele log hazard ratio (95% CI) = 0.693 (0.334 - 1.053); PMETA = 3.62×10−7) were the most highly ranked associations based on P-values with risk of developing grade 2 and higher PN. In silico functional analysis identified multiple regulatory elements and potential enhancer activity for S1PR1 within this genomic region. Inhibition of S1PR1 function in iPSC-derived human sensory neurons shows partial protection against paclitaxel-induced neurite damage. These pharmacogenetic findings further support ongoing clinical evaluations to target S1PR1 as a therapeutic strategy for prevention and/or treatment of MTA-induced neuropathy.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Ching-Yi Chen ◽  
Chao-Hsien Chen ◽  
Cheng-Yi Wang ◽  
Chih-Cheng Lai ◽  
Chien-Ming Chao ◽  
...  

Abstract Background The effect of additional antimicrobial agents on the clinical outcomes of patients with idiopathic pulmonary fibrosis (IPF) is unclear. Methods We performed comprehensive searches of randomized control trials (RCTs) that compared the clinical efficacy of additional antimicrobial agents to those of placebo or usual care in the treatment of IPF patients. The primary outcome was all-cause mortality, and the secondary outcomes were changes in forced vital capacity (FVC), diffusing capacity of the lung for carbon monoxide (DLCO), and the risk of adverse events (AEs). Results Four RCTs including a total of 1055 patients (528 receiving additional antibiotics and 527 receiving placebo or usual care) were included in this meta-analysis. Among the study group, 402 and 126 patients received co-trimoxazole and doxycycline, respectively. The all-cause mortality rates were 15.0% (79/528) and 14.0% (74/527) in the patients who did and did not receive additional antibiotics, respectively (odds ratio [OR] 1.07; 95% confidence interval [CI] 0.76 to 1.51; p = 0.71). No significant difference was observed in the changes in FVC (mean difference [MD], 0.01; 95% CI − 0.03 to 0.05; p = 0.56) and DLCO (MD, 0.05; 95% CI − 0.17 to 0.28; p = 0.65). Additional use of antimicrobial agents was also associated with an increased risk of AEs (OR 1.65; 95% CI 1.19 to 2.27; p = 0.002), especially gastrointestinal disorders (OR 1.54; 95% CI 1.10 to 2.15; p = 0.001). Conclusions In patients with IPF, adding antimicrobial therapy to usual care did not improve mortality or lung function decline but increased gastrointestinal toxicity.


2019 ◽  
Author(s):  
Richard J Allen ◽  
Beatriz Guillen-Guio ◽  
Justin M Oldham ◽  
Shwu-Fan Ma ◽  
Amy Dressen ◽  
...  

AbstractRationaleIdiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. The mechanisms by which this arises are poorly understood and it is likely that multiple pathways are involved. The strongest genetic association with IPF is a variant in the promoter of MUC5B where each copy of the risk allele confers a five-fold risk of disease. However, genome-wide association studies have reported additional signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion.ObjectivesTo improve our understanding of mechanisms that increase IPF susceptibility by identifying previously unreported genetic associations.Methods and measurementsWe performed the largest genome-wide association study undertaken for IPF susceptibility with a discovery stage comprising up to 2,668 IPF cases and 8,591 controls with replication in an additional 1,467 IPF cases and 11,874 controls. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Main resultsWe identified and replicated three new genome-wide significant (P<5×10-8) signals of association with IPF susceptibility (near KIF15, MAD1L1 and DEPTOR) and confirm associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF risk variants contribute to IPF susceptibility.ConclusionsNovel association signals support the importance of mTOR signalling in lung fibrosis and suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Sign in / Sign up

Export Citation Format

Share Document