scholarly journals The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism

Author(s):  
Brian J Willett ◽  
Joe Grove ◽  
Oscar MacLean ◽  
Craig Wilkie ◽  
Nicola Logan ◽  
...  

Vaccination-based exposure to spike protein derived from early SARS-CoV-2 sequences is the key public health strategy against COVID-19. Successive waves of SARS-CoV-2 infections have been characterised by the evolution of highly mutated variants that are more transmissible and that partially evade the adaptive immune response. Omicron is the fifth of these Variants of Concern (VOCs) and is characterised by a step change in transmission capability, suggesting significant antigenic and biological change. It is characterised by 45 amino acid substitutions, including 30 changes in the spike protein relative to one of the earliest sequences, Wuhan-Hu-1, of which 15 occur in the receptor-binding domain, an area strongly associated with humoral immune evasion. In this study, we demonstrate both markedly decreased neutralisation in serology assays and real-world vaccine effectiveness in recipients of two doses of vaccine, with efficacy partially recovered by a third mRNA booster dose. We also show that immunity from natural infection (without vaccination) is more protective than two doses of vaccine but inferior to three doses. Finally, we demonstrate fundamental changes in the Omicron entry process in vitro, towards TMPRSS2-independent fusion, representing a major shift in the replication properties of SARS-CoV-2. Overall, these findings underlie rapid global transmission and may alter the clinical severity of disease associated with the Omicron variant.

2021 ◽  
Author(s):  
Lukasz Suprewicz ◽  
Maxx Swoger ◽  
Sarthak Gupta ◽  
Ewelina Piktel ◽  
Fitzroy F Byfield ◽  
...  

Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. In the case of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2) has been identified as a necessary receptor, but not all ACE2-expressing cells are equally infected, suggesting that other extracellular factors are involved in host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Here, we present evidence that extracellular vimentin might act as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry. We demonstrate direct binding between vimentin and SARS-CoV-2 virus-like particles coated with the SARS-CoV-2 spike protein and show that antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cell lines. Our results suggest new therapeutic strategies for preventing and slowing SARS-CoV-2 infection, focusing on targeting cell host surface vimentin.


2014 ◽  
Vol 88 (14) ◽  
pp. 7952-7961 ◽  
Author(s):  
Oliver Wicht ◽  
Wentao Li ◽  
Lione Willems ◽  
Tom J. Meuleman ◽  
Richard W. Wubbolts ◽  
...  

ABSTRACTIsolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing.IMPORTANCERecurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV.


2021 ◽  
Author(s):  
Anna Ohradanova-Repic ◽  
Laura Gebetsberger ◽  
Gabor Tajti ◽  
Gabriela Ondrovicova ◽  
Romana Prazenicova ◽  
...  

In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), which is responsible for the proteolytic processing of the SARS-CoV-2 spike protein as virus priming for cell entry, appears as a rational therapeutic target for the clearance of SARS-CoV-2 infection. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Here, we tested the inhibitory capacities of the human milk glycoprotein lactoferrin and its N-terminal peptide pLF1, which we identified as inhibitors of plasminogen, a serine protease homologous to TMPRSS2. In vitro proteolysis assays revealed that, unlike full-length lactoferrin, pLF1 significantly inhibited the proteolytic activity of TMPRSS2. pLF1 inhibited both the proteolytic processing of the SARS-CoV-2 spike protein and the SARS-CoV-2 infection of simian Vero cells. Because lactoferrin is a natural product and several biologically active peptides, such as the N-terminally derived lactoferricins, are produced naturally by pepsin-mediated digestion, natural or synthetic peptides from lactoferrin represent well-achievable candidates for supporting prevention and treatment of COVID-19.


2021 ◽  
Author(s):  
Alba Escalera ◽  
Ana S. Gonzalez-Reiche ◽  
Sadaf Aslam ◽  
Ignacio Mena ◽  
Rebecca L. Pearl ◽  
...  

For efficient cell entry and membrane fusion, SARS-CoV-2 spike (S) protein needs to be cleaved at two different sites, S1/S2 and S2 by different cellular proteases such as furin and TMPRSS2. Polymorphisms in the S protein can affect cleavage, viral transmission, and pathogenesis. Here, we investigated the role of arising S polymorphisms in vitro and in vivo to understand the emergence of SARS-CoV-2 variants. First, we showed that the S:655Y is selected after in vivo replication in the mink model. This mutation is present in the Gamma Variant Of Concern (VOC) but it also occurred sporadically in early SARS-CoV-2 human isolates. To better understand the impact of this polymorphism, we analyzed the in vitro properties of a panel of SARS-CoV-2 isolates containing S:655Y in different lineage backgrounds. Results demonstrated that this mutation enhances viral replication and spike protein cleavage. Viral competition experiments using hamsters infected with WA1 and WA1-655Y isolates showed that the variant with 655Y became dominant in both direct infected and direct contact animals. Finally, we investigated the cleavage efficiency and fusogenic properties of the spike protein of selected VOCs containing different mutations in their spike proteins. Results showed that all VOCs have evolved to acquire an increased spike cleavage and fusogenic capacity despite having different sets of mutations in the S protein. Our study demonstrates that the S:655Y is an important adaptative mutation that increases viral cell entry, transmission, and host susceptibility. Moreover, SARS-COV-2 VOCs showed a convergent evolution that promotes the S protein processing.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Fernanda G. Versiani ◽  
Maria E. Almeida ◽  
Luis A. Mariuba ◽  
Patricia P. Orlandi ◽  
Paulo A. Nogueira

The human malaria is widely distributed in the Middle East, Asia, the western Pacific, and Central and South America.Plasmodium vivaxstarted to have the attention of many researchers since it is causing diseases to millions of people and several reports of severe malaria cases have been noticed in the last few years. The lack ofin vitrocultures forP. vivaxrepresents a major delay in developing a functional malaria vaccine. One of the major candidates to antimalarial vaccine is the merozoite surface protein-1 (MSP1), which is expressed abundantly on the merozoite surface and capable of activating the host protective immunity. Studies have shown that MSP-1 possesses highly immunogenic fragments, capable of generating immune response and protection in natural infection in endemic regions. This paper shows humoral immune response to different proteins of PvMSP1 and the statement of N-terminal to be added to the list of potential candidates for malaria vivax vaccine.


2021 ◽  
Author(s):  
Gideon Ampoma Gyebi ◽  
Oludare Ogunyemi ◽  
Ibrahim M. Ibrahim ◽  
Olalekan B. Ogunro ◽  
Adegbenro P. Adegunloye ◽  
...  

Abstract Targeting viral cell entry proteins is an emerging therapeutic strategy for inhibiting the first stage of SARS-CoV-2 infection. In this study, 106 bioactive terpenoids from African medicinal plants were screened through molecular docking analysis against human angiotensin-converting enzyme 2 (hACE2), human transmembrane protease serine 2 (TMPRSS2) and the S proteins of SARS-CoV-2, SARS-CoV and MERS-CoV. In silico ADMET and drug-likeness prediction, molecular dynamics simulation (MDS), binding free energy calculations and clustering analysis of MDS trajectories were performed on the top docked compounds to respective targets. The results revealed eight terpenoids with high binding tendencies to the catalytic residues of different targets. Pentacyclic terpenoids: 24-methylene cycloartenol and isoiguesterin interacted with the hACE2 binding hotspots for the SARS-CoV-2 Spike protein. 11-hydroxy-2 - (3,4-dihydroxybenzoyloxy) abieta -5,7,9 (11),13-tetraene-12-one, 11-hydroxy-2 -(4-hydroxybenzoyloxy)-abieta- 5,7,9(11),13-tetraene-12-one and other abietane diterpenes interacted strongly with the S1-specificy pocket of TMPRSS2. 3-benzoylhosloppone and cucurbitacin interacted with the RBD and S2 subunit of SARS-CoV-2 spike protein respectively. The predicted druggable and ADMET favourable terpenoids formed structurally stable complexes in the simulated dynamics environment. These terpenoids provides core structure that can be exploited for further lead optimization to design drugs against SARS-CoV-2 cell mediated entry, subject to further in vitro and in vivo studies.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Joachim Beige ◽  
Ralph Wendt ◽  
Despina Rüssmann ◽  
Karl-Peter Ringel

Abstract Background and Aims Incompatibility of dialysis procedure due to hypersensitivity against dialyzer material which currently is mainly based on polysulfone and derivatives can not be assessed by routine laboratory tests. Although the frequency of such symptoms is suspected to be low (below 2%) such resembles an important clinical problem because dialysis procedures are frequently accompanied by symptoms of non-tolerability with reasons not being entirely clear while circulatory reasons are suspected to play a major role. Method To enlighten the role of polysulfone hypersensitivity, we adapted known standardized material immune-toxicological tests (lymphocyte transformation test, basophil degranulation test) to the specific conditions of dialysis and polysulfone material sensitivity. We developed a method of polysulfone micronisation and measured humoral immune response of isolated patient´s lymphocytes when incubated with polysulfone dispersion. Results 39 samples from 103 patients with suspected polysulfone hypersensitivity showed positive results for type 1 (n=19), type 4 (n=18) or both type (n=2) reactions. There were no significant differences in the level of stimulation measured for DI, SI and lymphogenesis before and after dialysis (average delta -0.4; -0.28; - 1.74, p = 0.71; 0.34; 0.37) and with different dialyzer materials (Tab. 1). Patients with pos. type 4 results (LTT and lymphogenesis) showed highly correlated results in either LTT or lymphogenesis test (Fig. 1, R=0.87, p<0.0001). 8 out of 8 samples from patients with repeated test on different PS showed positive results on either PS. One patient tested positive on PS showed no hypersensitivity with another non-PS (PMMA) material. Conclusion This is the first methodological report showing plausible in-vitro results of patients samples concerning polysulfone intolerance. On the first superficial view, a “false-negative” rate of 60% looks rather disappointing, because all samples derived from patients with suspicion of PS hypersensitivity. However, due to the clinical variability of intolerance symptoms and the high prevalence of any problems after HD initiation, mainly of circulatory origin after initiating extracorporeal circuit, this rate may obviously express the true frequency of isolated PS material hypersensitivity in suspected patients. Alternative pathophysiological pathways of material sensitivity like complement activation, remain to be elucidated and incorporated into a comprehensive future testing panel. Further clinical and laboratory research is needed to define true polysulfone hypersensitivity and to enlighten the field of hypothetic subclinical material incompatibility in patients with impaired dialysis tolerability.


2021 ◽  
Vol 6 (1) ◽  
pp. e000733
Author(s):  
Astrid Muyldermans ◽  
Maria Bjerke ◽  
Thomas Demuyser ◽  
Deborah De Geyter ◽  
Ingrid Wybo ◽  
...  

Background/aimsSARS-CoV-2 is highly contagious. More evidence concerning extrapulmonary transmission routes such as the eyes is urgently needed. Although the humoral immune response is important in the viral containment, the local response in tears has not yet been studied. The aim of our study was twofold: to assess the prevalence of both SARS-CoV-2 RNA and antibodies in tear fluid.MethodsIn a first series, nasopharyngeal sampling and tear sampling by Schirmer test strips were performed in 26 acutely ill patients with COVID-19 to assess the presence of SARS-CoV-2 RNA by reverse transcription PCR. In a second series, IgG and IgA responses to SARS-CoV-2 spike protein in serum and tear fluid of convalescent individuals (n=22) were compared with control individuals (n=15) by ELISA.ResultsSARS-CoV-2 RNA was detected in tears of 7/26 (26.9%) patients with COVID-19. None of them had ocular symptoms. Convalescent individuals displayed a significant higher ratio of IgG (p<0.0001) and IgA (p=0.0068) in tears compared with control individuals. A sensitivity of 77.3% and specificity of 93.3% was observed for IgG, and 59.1% and 100% for IgA.ConclusionsOur results demonstrate the presence of SARS-CoV-2 RNA and a local IgG and IgA immune response in tear fluid. These data confirm the possibility of SARS-CoV-2 transmission through tear fluid and the importance of the eye as a first defence against SARS-CoV-2, indicating the potential of tears as a non-invasive surrogate for serum in monitoring the host immune response.


2021 ◽  
pp. eabd6990
Author(s):  
Sang Il Kim ◽  
Jinsung Noh ◽  
Sujeong Kim ◽  
Younggeun Choi ◽  
Duck Kyun Yoo ◽  
...  

Stereotypic antibody clonotypes exist in healthy individuals and may provide protective immunity against viral infections by neutralization. We observed that 13 out of 17 patients with COVID-19 had stereotypic variable heavy chain (VH) antibody clonotypes directed against the receptor-binding domain (RBD) of SARS-CoV-2 spike protein. These antibody clonotypes were comprised of immunoglobulin heavy variable (IGHV)3-53 or IGHV3-66 and immunoglobulin heavy joining (IGHJ)6 genes. These clonotypes included IgM, IgG3, IgG1, IgA1, IgG2, and IgA2 subtypes and had minimal somatic mutations, which suggested swift class switching after SARS-CoV-2 infection. The different immunoglobulin heavy variable chains were paired with diverse light chains resulting in binding to the RBD of SARS-CoV-2 spike protein. Human antibodies specific for the RBD can neutralize SARS-CoV-2 by inhibiting entry into host cells. We observed that one of these stereotypic neutralizing antibodies could inhibit viral replication in vitro using a clinical isolate of SARS-CoV-2. We also found that these VH clonotypes existed in six out of 10 healthy individuals, with IgM isotypes predominating. These findings suggest that stereotypic clonotypes can develop de novo from naïve B cells and not from memory B cells established from prior exposure to similar viruses. The expeditious and stereotypic expansion of these clonotypes may have occurred in patients infected with SARS-CoV-2 because they were already present.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Mikail Dogan ◽  
Lina Kozhaya ◽  
Lindsey Placek ◽  
Courtney Gunter ◽  
Mesut Yigit ◽  
...  

AbstractDevelopment of antibody protection during SARS-CoV-2 infection is a pressing question for public health and for vaccine development. We developed highly sensitive SARS-CoV-2-specific antibody and neutralization assays. SARS-CoV-2 Spike protein or Nucleocapsid protein specific IgG antibodies at titers more than 1:100,000 were detectable in all PCR+ subjects (n = 115) and were absent in the negative controls. Other isotype antibodies (IgA, IgG1-4) were also detected. SARS-CoV-2 neutralization was determined in COVID-19 and convalescent plasma at up to 10,000-fold dilution, using Spike protein pseudotyped lentiviruses, which were also blocked by neutralizing antibodies (NAbs). Hospitalized patients had up to 3000-fold higher antibody and neutralization titers compared to outpatients or convalescent plasma donors. Interestingly, some COVID-19 patients also possessed NAbs against SARS-CoV Spike protein pseudovirus. Together these results demonstrate the high specificity and sensitivity of our assays, which may impact understanding the quality or duration of the antibody response during COVID-19 and in determining the effectiveness of potential vaccines.


Sign in / Sign up

Export Citation Format

Share Document