scholarly journals Mild SARS-CoV-2 infection in rhesus macaques is associated with viral control prior to antigen-specific T cell responses in tissues

2022 ◽  
Author(s):  
Christine E. Nelson ◽  
Sivaranjani Namasivayam ◽  
Taylor W. Foreman ◽  
Keith D. Kauffman ◽  
Shunsuke Sakai ◽  
...  

SARS-CoV-2 primarily replicates in mucosal sites, and more information is needed about immune responses in infected tissues. We used rhesus macaques to model protective primary immune responses in tissues during mild COVID-19. Viral RNA levels were highest on days 1-2 post-infection and fell precipitously thereafter. 18F-fluorodeoxyglucose (FDG)-avid lung abnormalities and interferon (IFN)-activated myeloid cells in the bronchoalveolar lavage (BAL) were found on days ~3-4. Virus-specific effector CD8 and CD4 T cells were detectable in the BAL and lung tissue on days ~7-10, after viral RNA, lung inflammation, and IFN-activated myeloid cells had declined. Notably, SARS-CoV-2-specific T cells were not detectable in the nasal turbinates, salivary glands, and tonsils on day 10 post-infection. Thus, SARS-CoV-2 replication wanes in the lungs prior to T cell responses, and in the nasal and oral mucosa despite the apparent lack of Ag-specific T cells, suggesting that innate immunity efficiently restricts viral replication during mild COVID-19.

2021 ◽  
Vol 17 (7) ◽  
pp. e1009668
Author(s):  
Takushi Nomura ◽  
Hiroyuki Yamamoto ◽  
Masako Nishizawa ◽  
Trang Thi Thu Hau ◽  
Shigeyoshi Harada ◽  
...  

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10–17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


2021 ◽  
Author(s):  
Takushi Nomura ◽  
Hiroyuki Yamamoto ◽  
Masako Nishizawa ◽  
Trang Hau ◽  
Shigeyoshi Harada ◽  
...  

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A438-A438
Author(s):  
Mara Shainheit ◽  
Devin Champagne ◽  
Gabriella Santone ◽  
Syukri Shukor ◽  
Ece Bicak ◽  
...  

BackgroundATLASTM is a cell-based bioassay that utilizes a cancer patient‘s own monocyte-derived dendritic cells and CD4+ and CD8+ T cells to screen their mutanome and identify neoantigens that elicit robust anti-tumor T cell responses, as well as, deleterious InhibigensTM.1 GEN-009, a personalized vaccine comprised of 4–20 ATLAS-identified neoantigens combined with Hiltonol®, harnesses the power of neoantigen-specific T cells to treat individuals with solid tumors. The safety and efficacy of GEN-009 is being assessed in a phase 1/2a clinical trial (NCT03633110).MethodsA cohort of 15 adults with solid tumors were enrolled in the study. During the screening period, patients received standard of care PD-1-based immunotherapies appropriate for their tumor type. Subsequently, patients were immunized with GEN-009 with additional doses administered at 3, 6, 12, and 24 weeks. Peripheral blood mononuclear cells (PBMCs) were collected at baseline, pre-vaccination (D1), as well as 29, 50, 92, and 176 days post first dose. Vaccine-induced immunogenicity and persistence were assessed by quantifying neoantigen-specific T cell responses in ex vivo and in vitro stimulation dual-analyte fluorospot assays. Polyfunctionality of neoantigen-specific T cells was evaluated by intracellular cytokine staining. Additionally, potential correlations between the ATLAS-identified profile and vaccine-induced immunogenicity were assessed.ResultsGEN-009 augmented T cell responses in 100% of evaluated patients, attributable to vaccine and not checkpoint blockade. Furthermore, neoantigen-induced secretion of IFNγ and/or TNFα by PBMCs, CD4+, and CD8+ T cells was observed in all patients. Responses were primarily from polyfunctional TEM cells and detectable in both CD4+ and CD8+ T cell subsets. Some patients had evidence of epitope spreading. Unique response patterns were observed for each patient with no apparent relationship between tumor types and time to emergence, magnitude or persistence of response. Ex vivo vaccine-induced immune responses were observed as early as 1 month, and in some cases, persisted for 176 days. Clinical efficacy possibly attributable to GEN-009 was observed in several patients, but no correlation has yet been identified with neoantigen number or magnitude of immune response.ConclusionsATLAS empirically identifies stimulatory neoantigens using the patient‘s own immune cells. GEN-009, which is comprised of personalized, ATLAS-identified neoantigens, elicits early, long-lasting and polyfunctional neoantigen-specific CD4+ and CD8+ T cell responses in individuals with advanced cancer. Several patients achieved clinical responses that were possibly attributable to vaccine; efforts are underway to explore T cell correlates of protection. These data support that GEN-009, in combination with checkpoint blockade, represents a unique approach to treat solid tumors.AcknowledgementsWe are grateful to the patients and their families who consented to participate in the GEN-009-101 clinical trial.Trial RegistrationNCT03633110Ethics ApprovalThis study was approved by Western Institutional Review Board, approval number 1-1078861-1. All subjects contributing samples provided signed individual informed consent.ReferenceDeVault V, Starobinets H, Adhikari S, Singh S, Rinaldi S, Classon B, Flechtner J, Lam H. Inhibigens, personal neoantigens that drive suppressive T cell responses, abrogate protection of therapeutic anti-tumor vaccines. J. Immunol 2020; 204(1 Supplement):91.15.


2021 ◽  
Author(s):  
Pablo Garcia-Valtanen ◽  
Christopher Martin Hope ◽  
Makutiro Ghislain Masavuli ◽  
Arthur Eng Lip Yeow ◽  
Harikrishnan Balachandran ◽  
...  

Background The duration and magnitude of SARS-CoV-2 immunity after infection, especially with regard to the emergence of new variants of concern (VoC), remains unclear. Here, immune memory to primary infection and immunity to VoC was assessed in mild-COVID-19 convalescents one year after infection and in the absence of viral re-exposure or COVID-19 vaccination. Methods Serum and PBMC were collected from mild-COVID-19 convalescents at ~6 and 12 months after a COVID-19 positive PCR (n=43) and from healthy SARS-CoV-2-seronegative controls (n=15-40). Serum titers of RBD and Spike-specific Ig were quantified by ELISA. Virus neutralisation was assessed against homologous, pseudotyped virus and homologous and VoC live viruses. Frequencies of Spike and RBD-specific memory B cells were quantified by flow cytometry. Magnitude of memory T cell responses was quantified and phenotyped by activation-induced marker assay, while T cell functionality was assessed by intracellular cytokine staining using peptides specific to homologous Spike virus antigen and four VoC Spike antigens. Findings At 12 months after mild-COVID-19, >90% of convalescents remained seropositive for RBD-IgG and 88.9% had circulating RBD-specific memory B cells. Despite this, only 51.2% convalescents had serum neutralising activity against homologous live-SARS-CoV-2 virus, which decreased to 44.2% when tested against live B.1.1.7, 4.6% against B.1.351, 11.6% against P.1 and 16.2%, against B.1.617.2 VoC. Spike and non-Spike-specific T cells were detected in >50% of convalescents with frequency values higher for Spike antigen (95% CI, 0.29-0.68% in CD4+ and 0.11-0.35% in CD8+ T cells), compared to non-Spike antigens. Despite the high prevalence and maintenance of Spike-specific T cells in Spike 'high-responder' convalescents at 12 months, T cell functionality, measured by cytokine expression after stimulation with Spike epitopes corresponding to VoC was severely affected. Interpretations SARS-CoV-2 immunity is retained in a significant proportion of mild COVID-19 convalescents 12 months post-infection in the absence of re-exposure to the virus. Despite this, changes in the amino acid sequence of the Spike antigen that are present in current VoC result in virus evasion of neutralising antibodies, as well as evasion of functional T cell responses.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 2613-2613
Author(s):  
Maura L. Gillison ◽  
Mark M. Awad ◽  
Przemyslaw Twardowski ◽  
Ammar Sukari ◽  
Melissa Lynne Johnson ◽  
...  

2613 Background: GEN-009 is an adjuvanted personalized cancer vaccine containing up to 20 neoantigens selected by ATLAS, an ex vivo bioassay screening autologous T cells for immune responses against both neoantigens as well as Inhibigens. Inhibigen-specific T cells suppress immunity and have been shown to accelerate tumor progression in mice and are avoided in GEN-009. In cohort A, all patients immunized in the adjuvant setting with GEN-009 monotherapy developed immune responses. Nearly all (99%) of selected peptides were immunogenic: ex vivo CD4+ and CD8+ fluorospot responses specific for 51% and 41% of immunized peptides, respectively. Seven of 8 patients continue without progression with a median follow up of 18 months. Methods: GEN-009 is being evaluated in patients (pts) with advanced cancer who received standard-of-care (SOC) PD-1 inhibitor as monotherapy or in combination therapy during vaccine manufacturing. Five vaccine doses were administered over 24 weeks in combination with a PD-1 CPI. Patients who progressed prior to vaccination received alternative salvage therapy followed by GEN-009 in combination. Peripheral T cell responses were measured by fluorospot assays in ex vivo and in vitro stimulation. Results: 15 pts received GEN-009 in combination with a PD-1 inhibitor; 1 patient received GEN-009 monotherapy. Median number of neoantigens per vaccine was 14 (5-18). GEN-009-related adverse events were limited to vaccine injection site reactions and mild myalgias or fatigue. Longitudinal evaluation of ex vivo T cell responses revealed that sequential vaccination with GEN-009 had an overall additive effect on the robustness of IFNγ secretion and responses were persistent for at least 6 months in some patients. Epitope spread was detected in CPI sensitive patients, but not in CPI refractory patients receiving salvage therapy. Three patients who responded to PD-1 inhibition followed by disease stabilization then demonstrated further reduction after GEN-009 vaccination that could represent vaccine effect. Eight of 9 CPI responsive patients are progression-free from 3 to 10 months after first vaccine dose. Four of 7 CPI refractory patients have experienced unexpected prolonged stable disease after vaccination of up to 8 months after vaccination. 2 of 2 patients with available samples lost all evidence of circulating tumor DNA including non-targeted neoantigens. Conclusions: Vaccination with GEN-009 in combination with anti-PD-1 CPI in patients with advanced solid tumors shows little additive toxicity. Preliminary data demonstrate induction of broad neoantigen-specific immune responses and epitope spreading in the presence of PD-1 CPI. Broad immunity against tumor specific targets and encouraging patient outcomes support further study. Clinical trial information: NCT03633110.


Vaccines ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 126
Author(s):  
Lilin Lai ◽  
Nadine Rouphael ◽  
Yongxian Xu ◽  
Amy C. Sherman ◽  
Srilatha Edupuganti ◽  
...  

The cellular immune responses elicited by an investigational vaccine against an emergent variant of influenza (H3N2v) are not fully understood. Twenty-five subjects, enrolled in an investigational influenza A/H3N2v vaccine study, who received two doses of vaccine 21 days apart, were included in a sub-study of cellular immune responses. H3N2v-specific plasmablasts were determined by ELISpot 8 days after each vaccine dose and H3N2v specific CD4+ T cells were quantified by intracellular cytokine and CD154 (CD40 ligand) staining before vaccination, 8 and 21 days after each vaccine dose. Results: 95% (19/20) and 96% (24/25) subjects had pre-existing H3N2v specific memory B, and T cell responses, respectively. Plasmablast responses at Day 8 after the first vaccine administration were detected against contemporary H3N2 strains and correlated with hemagglutination inhibition HAI (IgG: p = 0.018; IgA: p < 0.001) and Neut (IgG: p = 0.038; IgA: p = 0.021) titers and with memory B cell frequency at baseline (IgA: r = 0.76, p < 0.001; IgG: r = 0.74, p = 0.0001). The CD4+ T cells at Days 8 and 21 expanded after prime vaccination and this expansion correlated strongly with early post-vaccination HAI and Neut titers (p ≤ 0.002). In an adult population, the rapid serological response observed after initial H3N2v vaccination correlates with post-vaccination plasmablasts and CD4+ T cell responses.


2017 ◽  
Vol 91 (23) ◽  
Author(s):  
Ulrike Sauermann ◽  
Antonia Radaelli ◽  
Nicole Stolte-Leeb ◽  
Katharina Raue ◽  
Massimiliano Bissa ◽  
...  

ABSTRACT An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen. IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3671-3671
Author(s):  
Jochen Greiner ◽  
Susanne Hofmann ◽  
Krzysztof Giannopoulos ◽  
Markus Rojewski ◽  
Anna Babiak ◽  
...  

Abstract Abstract 3671 Poster Board III-607 For effective elimination of malignant cells by specific T cells a co-activation of CD4- and CD8-positive T cells might be important. We performed two RHAMM-R3 peptide vaccination trials using 300μg and 1000μg for patients with AML, MDS and multiple myeloma overexpressing RHAMM. Similar mild toxicity of both cohorts was found, only mild drug-related adverse events were observed such as erythema and induration of the skin. In the 300μg cohort we detected in 7/10 (70 %) patients specific immune responses and also positive clinical effects in 5/10 (50 %) patients. In the high dose peptide vaccination trial (1000μg peptide) 4/9 (44 %) patients showed positive immune responses. These patients showed an increase of CD8+RHAMM-R3 tetramer+/CD45RA+/CCR7-/CD27-/CD28- effector T cells and an increase of R3-specific CD8+ T cells. In the higher peptide dose cohort three patients showed positive clinical effects. However, higher doses of peptide do not improve the frequency and intensity of immune responses in this clinical trial and might induce immune tolerance. In this work, we investigated the co-existence of serological immune responses against RHAMM detected by a RHAMM-specific ELISA of patients with AML, MDS and multiple myeloma treated in these two peptide vaccination trials. We correlated these results to specific T cell responses of CD8-positive T cells measured by ELISpot assays for interferon gamma and Granzyme B, tetramer staining and chromium release assays. Moreover, these results were compared to the frequency of regulatory T cells. 4/19 patients have a positive serological immune response in ELISA assay, all of these patients developed also strong specific CD8-positive T cell responses during peptide vaccination detected by ELISpot assays and tetramer staining. As expected, peptide vaccination did not result in the induction of humoral immune responses. In further ELISA assays we measured IL-2 and IL-10 levels in the sera of the patients before and three weeks after four vaccinations. While IL-10 levels remained at a rather low level over the time of vaccination, we detected an increase of IL-2 up to the five-fold of the initial levels in four of ten patients. Moreover, we performed a proteome array to detect cytokine and chemokine regulation in sera of patients vaccinated in these two trials during and after RHAMM-R3 peptide vaccination. 36 cytokines, chemokines and acute phase proteins were measured and both cohorts vaccinated with different peptide doses were compared. Taken together, RHAMM-R3 peptide vaccination induced both immunological and clinical responses. Co-existence of immune responses of CD4-positive T cells against the target RHAMM seems to be important for an induction of strong immune responses of CD8-positive T cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3592-3592
Author(s):  
Susanne Hofmann ◽  
Vanessa Schneider ◽  
Lars Bullinger ◽  
Yoko Ono ◽  
Anita Schmitt ◽  
...  

Abstract Abstract 3592 Nucleophosmin gene 1 mutations (NPM1mut) are one of the most frequent molecular alterations in AML and distinct immune responses might contribute to the favorable prognosis of AML patients with NPM1mut. Recently, we showed specific T cell responses of CD4+ and CD8+ T cells against epitopes derived from mutated regions of NPM1 (Greiner et al., Blood. 2012 May 16, Epub). In the present study, we investigated clinical parameters and the clinical outcome of NPM1mut AML patients in accordance to their immune responses against different NPM1 epitopes. Moreover, we examined the quantitative expression of different leukemia-associated antigens (LAAs) in NPM1mutAML patients. In ELISpot analysis of 33 healthy volunteers and 27 AML patients, we detected T cell responses of CD4+ and CD8+ T cells against epitopes derived from the mutated region of NPM1. We performed further tetramer assays against the most interesting epitopes and chromium release assays to show the cytotoxicity of peptide-specific T cells. Microarray analysis was performed to analyze the expression of different LAAs in NPM1mut and NPM1wtAML patients. Two epitopes (peptide #1 and #3) derived from NPM1mut induced CD8+ T cell responses. 33% of the NPM1mut AML patients showed immune responses against peptide #1 and 44% against peptide #3. NPM1mut AML patients showed a significantly higher frequency of T cell responses against peptide #3 in contrast to HVs (p=0.046), whereas for peptide #1 the frequency of T cell responses of AML NPM1mut patients and HVs was not significantly different. Specific lysis of pulsed T2 cells but also NPM1mut leukemic blasts was detected in chromium release assays. Therefore, overlapping peptides (OL) were analyzed in ELISpot assays and the peptide called OL8 showed favorable results to activate both CD8+ and CD4+ T cells. We performed survival analysis for these 33 NPM1mut patients analyzed by ELISpot comparing cases with or without specific T cell responses. Our data suggest a trend to a better overall survival (OS) for patients with specific T cell responses against peptide #1 or #3. However, the patient numbers are small and the data have to be interpreted carefully. Analyses with material from larger controlled clinical trials with a high number of patients with NPM1mut AML have to be performed. Our microarray analysis of 30 AML patients showed a high expression of different LAAs like RHAMM, WT-1 and BCL-2 in all subtypes of cells of NPM1mutAML patients, also in leukemic progenitor cells. This demonstrates that NPM1 is an AML subtype suitable for poly-targeted immunotherapeutic trials. Taken together, NPM1mut might constitute an interesting target structure for individualized immunotherapeutic approaches in NPM1mut AML patients. We hypothesize that immune responses to NPM1 mutation may contribute to the favorable prognosis. Disclosures: No relevant conflicts of interest to declare.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21032-21032
Author(s):  
K. N. Heller ◽  
P. G. Steinherz ◽  
C. S. Portlock ◽  
C. Münz

21032 Background: Epstein-Barr virus (EBV) asymptomatically establishes persistent infections in more than 90% of the adult population. However, due to effective immune control, only a minority of infected carriers develops spontaneous EBV-associated lymphomas. Since EBV nuclear antigen-1 (EBNA1) is the only protein expressed in all proliferating EBV infected cells we hypothesize that EBNA1 specific immune response is critical in preventing EBV-positive lymphomas. Methods: After informed consent, peripheral blood from healthy volunteers and lymphoma patients (prior to therapy- no evidence of cytopenia) were stimulated (ex vivo) with overlapping peptides covering the immunogenic EBNA1 (aa400–641) sequence. Frequency of EBNA1-specific T-cells were assessed by intracellular cytokine staining and flow cytometric proliferation assays. Cytokine pattern, surface marker phenotype and functional reactivity against EBV specific and control antigens were analyzed. Results: Patient and volunteer immune responses to control antigens and other viruses were assessed and statistically indistinguishable. EBNA1 specific CD4+ T cell responses were detected among 18 of 20 healthy carriers, and among 10 of 16 patients with EBV-negative lymphoma (relative to healthy volunteers p=0.145 via paired student T test). None of the patients with EBV-positive lymphomas (n=8) had a detectable EBNA1-specific CD4+ T-cell response (p<0.003 relative to healthy volunteers and patients with EBV-negative lymphomas). Conclusions: Healthy volunteers and patients with EBV-negative lymphoma have statistically similar EBNA1-specific CD4+ T cell responses. Although patients with EBV-positive lymphoma have intact immune responses to common viruses and antigens, they selectively lack an EBNA1-specific CD4+ T cell response. An intact EBNA1 specific immune response among patients with EBV-negaitve lymphoma implies that lymphoma is not a cause of a selective immune deficiency. On the contrary, these findings suggest that EBNA1-specific CD4+ T cells are critical in the prevention of EBV mediated lymphomas, and a defect in EBNA1 specific immunity may leave EBV carriers suseptible to EBV-positive lymphomas. EBNA1- specific CD4+ T cell function may be a new target for therapies of EBV-associated malignancies. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document