scholarly journals Impact of chromosome fusions on 3D genome organization and gene expression in budding yeast

2017 ◽  
Author(s):  
Marco Di Stefano ◽  
Francesca Di Giovanni ◽  
Davide Baù ◽  
Lucas B. Carey ◽  
Marc A. Marti-Renom ◽  
...  

ABSTRACTThe three-dimensional organization of chromosomes can influence transcription. However, the frequency and magnitude of these effects remains debated. To determine how changes in chromosome positioning affect transcription across thousands of genes with minimal perturbation, we characterized nuclear organization and global gene expression in budding yeast containing chromosome fusions. We used computational modelling and single cell imaging to determine chromosome position and integrated these data with genome-wide transcriptional profiles from RNA sequencing. We find that chromosome fusions dramatically alter 3D nuclear organization without leading to strong genome-wide changes in transcription. However, we observe a mild but significant and reproducible increase in expression of genes near fusion sites. Modeling suggests that this is due to both disruption of telomere-associated silencing and the displacement of genes relative to the nuclear periphery. A 10% decrease in the predicted time a gene spends near the nuclear periphery is associated with a 10% increase in expression. These data suggest that basal transcriptional activity is sensitive to radial changes on gene position, and provide insight into the functional relevance of budding yeast chromosome-level three-dimensional organization in gene expression.

Genetics ◽  
2020 ◽  
Vol 214 (3) ◽  
pp. 651-667 ◽  
Author(s):  
Marco Di Stefano ◽  
Francesca Di Giovanni ◽  
Vasilisa Pozharskaia ◽  
Mercè Gomar-Alba ◽  
Davide Baù ◽  
...  

The three-dimensional (3D) organization of chromosomes can influence transcription. However, the frequency and magnitude of these effects remain debated. To determine how changes in chromosome positioning affect transcription across thousands of genes with minimal perturbation, we characterized nuclear organization and global gene expression in budding yeast containing chromosome fusions. We used computational modeling and single-cell imaging to determine chromosome positions, and integrated these data with genome-wide transcriptional profiles from RNA sequencing. We find that chromosome fusions dramatically alter 3D nuclear organization without leading to strong genome-wide changes in transcription. However, we observe a mild but significant and reproducible increase in the expression of genes displaced away from the periphery. The increase in transcription is inversely proportional to the propensity of a given locus to be at the nuclear periphery; for example, a 10% decrease in the propensity of a gene to reside at the nuclear envelope is accompanied by a 10% increase in gene expression. Modeling suggests that this is due to both deletion of telomeres and to displacement of genes relative to the nuclear periphery. These data suggest that basal transcriptional activity is sensitive to radial changes in gene position, and provide insight into the functional relevance of budding yeast chromosome-level 3D organization in gene expression.


2004 ◽  
Vol 24 (20) ◽  
pp. 8823-8833 ◽  
Author(s):  
Nevin Sabet ◽  
Sam Volo ◽  
Cailin Yu ◽  
James P. Madigan ◽  
Randall H. Morse

ABSTRACT The histone amino termini have emerged as key targets for a variety of modifying enzymes that function as transcriptional coactivators and corepressors. However, an important question that has remained largely unexplored is the extent to which specific histone amino termini are required for the activating and repressive functions of these enzymes, Here we address this issue by focusing on the prototypical histone deacetylase, Rpd3p, in the budding yeast Saccharomyces cerevisiae. We show that targeting Rpd3p to a reporter gene in this yeast can partially repress transcription when either the histone H3 or the histone H4 amino terminus is deleted, indicating that the “tails” are individually dispensable for repression by Rpd3p. In contrast, we find that the effect of rpd3 gene disruption on global gene expression is considerably reduced in either a histone H3Δ1-28 (H3 lacking the amino-terminal 28 amino acids) or a histone H4(K5,8,12,16Q) (H4 with lysine residues 5, 8, 12, and 16 changed to glutamine residues) background compared to the wild-type background, indicating a requirement for one or both of these histone tails in Rpd3p-mediated regulation for many genes. These results suggest that acetylation of either the H3 or the H4 amino terminus could suffice to allow the activation of such genes. We also examine the relationship between H3 tails and H4 tails in global gene expression and find substantial overlap among the gene sets regulated by these histone tails. We also show that the effects on genome-wide expression of deleting the H3 or H4 amino terminus are similar but not identical to the effects of mutating the lysine residues in these same regions. These results indicate that the gene regulatory potential of the H3 and H4 amino termini is substantially but not entirely contained in these modifiable lysine residues.


2017 ◽  
Author(s):  
Cristina Cruz ◽  
Monica Della Rosa ◽  
Christel Krueger ◽  
Qian Gao ◽  
Lucy Field ◽  
...  

AbstractTranscription of protein coding genes is accompanied by recruitment of COMPASS to promoter-proximal chromatin, which deposits di- and tri-methylation on histone H3 lysine 4 (H3K4) to form H3K4me2 and H3K4me3. Here we determine the importance of COMPASS in maintaining gene expression across lifespan in budding yeast. We find that COMPASS mutations dramatically reduce replicative lifespan and cause widespread gene expression defects. Known repressive functions of H3K4me2 are progressively lost with age, while hundreds of genes become dependent on H3K4me3 for full expression. Induction of these H3K4me3 dependent genes is also impacted in young cells lacking COMPASS components including the H3K4me3-specific factor Spp1. Remarkably, the genome-wide occurrence of H3K4me3 is progressively reduced with age despite widespread transcriptional induction, minimising the normal positive correlation between promoter H3K4me3 and gene expression. Our results provide clear evidence that H3K4me3 is required to attain normal expression levels of many genes across organismal lifespan.


2005 ◽  
Vol 25 (2) ◽  
pp. 716-727 ◽  
Author(s):  
Fredrik Fagerström-Billai ◽  
Anthony P. H. Wright

ABSTRACT Gene duplication is considered an important evolutionary mechanism. Unlike many characterized species, the fission yeast Schizosaccharomyces pombe contains two paralogous genes, tup11 + and tup12 + , that encode transcriptional corepressors similar to the well-characterized budding yeast Tup1 protein. Previous reports have suggested that Tup11 and Tup12 proteins play redundant roles. Consistently, we show that the two Tup proteins can interact together when expressed at normal levels and that each can independently interact with the Ssn6 protein, as seen for Tup1 in budding yeast. However, tup11 − and tup12 − mutants have different phenotypes on media containing KCl and CaCl2. Consistent with the functional difference between tup11 − and tup12 − mutants, we identified a number of genes in genome-wide gene expression experiments that are differentially affected by mutations in the tup11 + and tup12 + genes. Many of these genes are differentially derepressed in tup11 − mutants and are over-represented in genes that have previously been shown to respond to a range of different stress conditions. Genes specifically derepressed in tup12 − mutants require the Ssn6 protein for their repression. As for Tup12, Ssn6 is also required for efficient adaptation to KCl- and CaCl2-mediated stress. We conclude that Tup11 and Tup12 are at least partly functionally diverged and suggest that the Tup12 and Ssn6 proteins have adopted a specific role in regulation of the stress response.


2020 ◽  
Vol 117 (21) ◽  
pp. 11459-11470 ◽  
Author(s):  
Qian Bian ◽  
Erika C. Anderson ◽  
Qiming Yang ◽  
Barbara J. Meyer

Genomic regions preferentially associate with regions of similar transcriptional activity, partitioning genomes into active and inactive compartments within the nucleus. Here we explore mechanisms controlling genome compartment organization inCaenorhabditis elegansand investigate roles for compartments in regulating gene expression. Distal arms ofC. eleganschromosomes, which are enriched for heterochromatic histone modifications H3K9me1/me2/me3, interact with each other bothin cisandin trans,while interacting less frequently with central regions, leading to genome compartmentalization. Arms are anchored to the nuclear periphery via the nuclear envelope protein CEC-4, which binds to H3K9me. By performing genome-wide chromosome conformation capture experiments (Hi-C), we showed that eliminating H3K9me1/me2/me3 through mutations in the methyltransferase genesmet-2andset-25significantly impaired formation of inactive Arm and active Center compartments.cec-4mutations also impaired compartmentalization, but to a lesser extent. We found that H3K9me promotes compartmentalization through two distinct mechanisms: Perinuclear anchoring of chromosome arms via CEC-4 to promote theircisassociation, and an anchoring-independent mechanism that compacts individual chromosome arms. In bothmet-2 set-25andcec-4mutants, no dramatic changes in gene expression were found for genes that switched compartments or for genes that remained in their original compartment, suggesting that compartment strength does not dictate gene-expression levels. Furthermore, H3K9me, but not perinuclear anchoring, also contributes to formation of another prominent feature of chromosome organization, megabase-scale topologically associating domains on X established by the dosage compensation condensin complex. Our results demonstrate that H3K9me plays crucial roles in regulating genome organization at multiple levels.


2020 ◽  
Vol 117 (23) ◽  
pp. 13033-13043
Author(s):  
Ayelen Lizarraga ◽  
Zach Klapholz O’Brown ◽  
Konstantinos Boulias ◽  
Lara Roach ◽  
Eric Lieberman Greer ◽  
...  

Trichomonas vaginalisis a common sexually transmitted parasite that colonizes the human urogenital tract causing infections that range from asymptomatic to highly inflammatory. Recent works have highlighted the importance of histone modifications in the regulation of transcription and parasite pathogenesis. However, the nature of DNA methylation in the parasite remains unexplored. Using a combination of immunological techniques and ultrahigh-performance liquid chromatography (UHPLC), we analyzed the abundance of DNA methylation in strains with differential pathogenicity demonstrating that N6-methyladenine (6mA), and not 5‐methylcytosine (5mC), is the main DNA methylation mark inT. vaginalis. Genome-wide distribution of 6mA reveals that this mark is enriched at intergenic regions, with a preference for certain superfamilies of DNA transposable elements. We show that 6mA inT. vaginalisis associated with silencing when present on genes. Interestingly, bioinformatics analysis revealed the presence of transcriptionally active or repressive intervals flanked by 6mA-enriched regions, and results from chromatin conformation capture (3C) experiments suggest these 6mA flanked regions are in close spatial proximity. These associations were disrupted when parasites were treated with the demethylation activator ascorbic acid. This finding revealed a role for 6mA in modulating three-dimensional (3D) chromatin structure and gene expression in this divergent member of the Excavata.


1993 ◽  
Vol 123 (5) ◽  
pp. 1055-1068 ◽  
Author(s):  
M Antoniou ◽  
M Carmo-Fonseca ◽  
J Ferreira ◽  
A I Lamond

Murine erythroleukemia (MEL) cells are erythroid progenitors that can be induced to undergo terminal erythroid differentiation in culture. We have used MEL cells here as a model system to study the nuclear organization of splicing snRNPs during the physiological changes in gene expression which accompany differentiation. In uninduced MEL cells, snRNPs are widely distributed throughout the nucleoplasm and show an elevated concentration in coiled bodies. Within the first two days after induction of terminal erythroid differentiation, the pattern of gene expression changes, erythroid-specific transcription is activated and transcription of many other genes is repressed. During this early stage splicing snRNPs remain widely distributed through the nucleoplasm and continue to associate with coiled bodies. At later stages of differentiation (four to six days), when total transcription levels have greatly decreased, splicing snRNPs are redistributed. By six days postinduction snRNPs were concentrated in large clusters of interchromatin granules and no longer associated with coiled bodies. At the end-point of erythroid differentiation, just before enucleation, we observe a dramatic segregation of splicing snRNPs from the condensed chromatin. Analysis by EM shows that the snRNPs are packaged into a membrane-associated structure at the nuclear periphery which we term the "SCIM" domain (i.e., SnRNP Clusters Inside a Membrane).


2003 ◽  
Vol 4 (2) ◽  
pp. 208-215 ◽  
Author(s):  
David W. Galbraith

The tissues and organs of multicellular eukaryotes are frequently observed to comprise complex three-dimensional interspersions of different cell types. It is a reasonable assumption that different global patterns of gene expression are found within these different cell types. This review outlines general experimental strategies designed to characterize these global gene expression patterns, based on a combination of methods of transgenic fluorescent protein (FP) expression and targeting, of flow cytometry and sorting and of high-throughput gene expression analysis.


Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1606
Author(s):  
Shuai Zhang ◽  
Ruixue Wang ◽  
Cheng Huang ◽  
Ludan Zhang ◽  
Lin Sun

Aneuploidy, which disrupts the genetic balance due to partial genome dosage changes, is usually more detrimental than euploidy variation. To investigate the modulation of gene expression in aneuploidy, we analyzed the transcriptome sequencing data of autosomal and sex chromosome trisomy in Drosophila. The results showed that most genes on the varied chromosome (cis) present dosage compensation, while the remainder of the genome (trans) produce widespread inverse dosage effects. Some altered functions and pathways were identified as the common characteristics of aneuploidy, and several possible regulatory genes were screened for an inverse dosage effect. Furthermore, we demonstrated that dosage changes of inverse regulator Inr-a/pcf11 can produce a genome-wide inverse dosage effect. All these findings suggest that the mechanism of genomic imbalance is related to the changes in the stoichiometric relationships of macromolecular complex members that affect the overall function. These studies may deepen the understanding of gene expression regulatory mechanisms.


Sign in / Sign up

Export Citation Format

Share Document