scholarly journals Epigenetic aging of human hematopoietic cells is not accelerated upon transplantation into mice

2018 ◽  
Author(s):  
Joana Frobel ◽  
Susann Rahmig ◽  
Julia Franzen ◽  
Claudia Waskow ◽  
Wolfgang Wagner

AbstractTransplantation of human hematopoietic stem cells into immunodeficient mice provides a powerful in vivo model system to gain functional insights into hematopoietic differentiation. So far, it remains unclear if epigenetic changes of normal human hematopoiesis are recapitulated upon engraftment into such “humanized mice”. Mice have a much shorter life expectancy than men, and therefore we hypothesized that the xenogeneic environment might greatly accelerate the epigenetic clock. We demonstrate that genome-wide DNA methylation patterns of normal human hematopoietic development are indeed recapitulated upon engraftment in mice – particularly those of normal early B cell progenitor cells. Furthermore, we tested three epigenetic aging signatures and none of them indicated that the murine environment accelerated age-associated DNA methylation changes. These results demonstrate that the murine transplantation model overall recapitulates epigenetic changes of human hematopoietic development, whereas epigenetic aging seems to occur cell intrinsically.

2020 ◽  
Vol 245 (17) ◽  
pp. 1543-1551 ◽  
Author(s):  
Mieko Matsuyama ◽  
Arne Søraas ◽  
Sarah Yu ◽  
Kyuhyeon Kim ◽  
Evi X Stavrou ◽  
...  

The mechanism of aging is not yet fully understood. It has been recognized that there are age-dependent changes in the DNA methylation pattern of the whole genome. To date, there are several DNA methylation-based estimators of the chronological age. A majority of the estimators use the DNA methylation data from a single tissue type, such as blood. In 2013, for the first time, Steve Horvath reported the DNA methylation-based age estimator (353 CpGs were used) that could be applied to multiple tissues. A refined, more sensitive version that uses 391 CpGs was subsequently developed and validated in human cells, including fibroblasts. In this review, the age predicted by DNA methylation-based age estimator is referred to as DNAmAge, and the biological process controlling the progression of DNAmAge is referred to as the epigenetic aging in this minireview. The concepts of DNAmAge and epigenetic aging provide us opportunities to discover previously unrecognized biological events controlling aging. In this article, we discuss the frequently asked questions regarding DNAmAge and the epigenetic aging by introducing recent studies of ours and others. We focus on addressing the following questions: (1) Is there any synchronization of DNAmAge between cells in a human body?, (2) Can we use in vitro (cell culture) systems to study the epigenetic aging?, (3) Is there an age limit of DNAmAge?, and (4) Is it possible to change the speed and direction of the epigenetic aging? We describe our current understandings to these questions and outline potential future directions. Impact statement Aging is associated with DNA methylation (DNAm) changes. Recent advancement of the whole-genome DNAm analysis technology allowed scientists to develop DNAm-based age estimators. A majority of these estimators use DNAm data from a single tissue type such as blood. In 2013, a multi-tissue age estimator using DNAm pattern of 353 CpGs was developed by Steve Horvath. This estimator was named “epigenetic clock”, and the improved version using DNAm pattern of 391 CpGs was developed in 2018. The estimated age by epigenetic clock is named DNAmAge. DNAmAge can be used as a biomarker of aging predicting the risk of age-associated diseases and mortality. Although the DNAm-based age estimators were developed, the mechanism of epigenetic aging is still enigmatic. The biological significance of epigenetic aging is not well understood, either. This minireview discusses the current understanding of the mechanism of epigenetic aging and the future direction of aging research.


2021 ◽  
Author(s):  
Jonathan Higham ◽  
Qian Zhang ◽  
Rosie M Walker ◽  
Sarah E Harris ◽  
David M Howard ◽  
...  

DNA methylation is an epigenetic mark associated with gene repression and genome stability. Its pattern in the genome is disrupted with age and these changes can be used to statistically predict age with epigenetic clocks. Rates of aging inferred from these clocks correlate with human health. However, the molecular mechanisms underpinning age-associated DNA methylation changes are unknown. Local DNA sequence plays a strong role in programming DNA methylation levels at individual loci independently of age, but its influence on age-associated DNA methylation changes is unknown. We analysed longitudinal human DNA methylation trajectories at 345,895 CpGs from 600 individuals aged between 67 and 80 to understand the factors responsible for age-associated epigenetic changes at individual CpGs in the genome. We show that changes in methylation with age are especially apparent at 8,322 low CpG density loci. Using SNP data from the same individuals we demonstrate that DNA methylation trajectories are affected by local sequence polymorphisms at 1,487 loci with low CpG density. More generally, we find that local CpG density is a strong determinant of a CpG's methylation trajectory and that CpGs located in low CpG density regions are particularly prone to change. Overall, our results demonstrate that local DNA sequence influences age-associated DNA methylation changes in humans in vivo. We suggest that this occurs because interactions between CpGs reinforce maintenance of methylation patterns in CpG dense regions.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Todd R. Robeck ◽  
Zhe Fei ◽  
Ake T. Lu ◽  
Amin Haghani ◽  
Eve Jourdain ◽  
...  

AbstractThe development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.


Blood ◽  
2011 ◽  
Vol 117 (18) ◽  
pp. 4773-4777 ◽  
Author(s):  
Hal E. Broxmeyer ◽  
Man-Ryul Lee ◽  
Giao Hangoc ◽  
Scott Cooper ◽  
Nutan Prasain ◽  
...  

Abstract Cryopreservation of hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) is crucial for cord blood (CB) banking and transplantation. We evaluated recovery of functional HPC cryopreserved as mononuclear or unseparated cells for up to 23.5 years compared with prefreeze values of the same CB units. Highly efficient recovery (80%-100%) was apparent for granulocyte-macrophage and multipotential hematopoietic progenitors, although some collections had reproducible low recovery. Proliferative potential, response to multiple cytokines, and replating of HPC colonies was extensive. CD34+ cells isolated from CB cryopreserved for up to 21 years had long-term (≥ 6 month) engrafting capability in primary and secondary immunodeficient mice reflecting recovery of long-term repopulating, self-renewing HSCs. We recovered functionally responsive CD4+ and CD8+ T lymphocytes, generated induced pluripotent stem (iPS) cells with differentiation representing all 3 germ cell lineages in vitro and in vivo, and detected high proliferative endothelial colony forming cells, results of relevance to CB biology and banking.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sebastian Canovas ◽  
Elena Ivanova ◽  
Raquel Romar ◽  
Soledad García-Martínez ◽  
Cristina Soriano-Úbeda ◽  
...  

The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 666-666
Author(s):  
Noriyuki Saito ◽  
Fumihiko Ishikawa ◽  
Kazuya Shimoda ◽  
Shuro Yoshida ◽  
Yoriko Saito ◽  
...  

Abstract Idiopathic myelofibrosis (IMF) is characterized by clonal proliferation of abnormal myelomonocytic cells and megakaryocytes. These abnormal cells secrete various cytokines resulting in reactive fibrosis and increased collagen content in the bone marrow (BM), and lead to extramedullary hematopoiesis and the appearance of CD34+ cells in the peripheral blood (PB). Although IMF is thought to originate at the level of hematopoietic stem cell (HSC), this has not been demonstrated directly in primary human IMF. To demonstrate the involvement of HSCs in the pathogenesis of IMF and to establish an in vivo model of IMF, we used the newborn NOD/SCID/IL2rg-null xenotransplantation model. We purified PB CD34+ cells from six IMF patients, transplanted 1–10 x10e4 cells intravenously into newborn NOD/SCID/IL2rg-null recipients and analyzed PB and BM human CD45+ hematopoietic cell chimerism, degree of suppression of murine hematopoiesis, presence of hallmark BM fibrosis and plasma TGF-b1 levels in the recipients at 6 months post-transplantation. Primary IMF PB CD34+ cells from five out of six patients engrafted in twelve out of twelve recipients. BM of all engrafted recipients demonstrated fibrotic changes associated with increased proliferation of murine fibroblasts, the presence of human megakaryocytes and elevated plasma TGF-b1 levels, recapitulating the clinical features of IMF. Three distinct patterns of human hematopoietic reconstitution were observed among the engrafted recipients: Predominantly malignant myelomonocytic engraftment in the PB and BM (n=4), Reconstitution of both normal human hematopoiesis (with mature B and T cells, myeloid cells and platelets) and malignant myelomonocytic cells (n=6) and Development of acute leukemia (n=2). Fibrotic change was seen even in the BM of recipients that showed normal human hematopoietic reconstitution, showing that in IMF, there is co-existence of both normal and malignant hematopoietic stem/progenitor cells in the PB CD34+ fraction. Furthermore, when 5–10 x 10e3 sorted PB CD34+CD38– cells from three patients were transplanted into six newborn NOD/SCID/IL2rg-null recipients, reconstitution with human myelomonocytic cells associated with BM fibrosis was demonstrated in all recipients, with compatible level of PB and BM chimerism with those transplanted with PB CD34+ cells. These findings demonstrate that the IMF-initiating cells are contained within the HSC fraction. The newborn NOD/SCID/IL2rg-null xenotransplantation model provides an in vivo model of primary human IMF that may lead to better understanding of the mechanisms of IMF pathogenesis including the identification of IMF stem cells and may be useful for development of novel therapeutic agents for IMF.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1460-1460
Author(s):  
Laura A Paganessi ◽  
Lydia Luy Tan ◽  
Sucheta Jagan ◽  
Robin Frank ◽  
Antonio M. Jimenez ◽  
...  

Abstract Abstract 1460 Many patients with hematologic malignancies choose hematopoietic stem cell transplantation (HSCT) as a treatment option. The most common source of Hematopoietic Stem and Progenitor Cells (HSC/HPC) for adult recipients is mobilized Peripheral Blood (mobPB). Limited quantities of HSC/HPC obtainable from an umbilical cord restricts its use for adult recipients. Ex vivo treatment of umbilical cord blood (CB) with cytokines and growth factors is being used to expand the population of cord blood HSC/HPCs in hopes of obtaining higher numbers of transplantable CB cells. In addition, cytokines and growth factors are often utilized post-transplant in an attempt to improve the rate of immune reconstitution. It has been previously reported that granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage-colony-stimulating factor (GM-CSF) up-regulate CD26 (dipeptidyl peptidase IV/DPPIV) activity on freshly isolated CD34+ CB cells within 18 hours of culture [Christopherson, et al. Exp Hematol 2006]. Separate studies have demonstrated that treatment of uncultured CD34+ CB cells with the CD26 inhibitor Diprotin A increases transplant efficiency into immunodeficient mice [Christopherson, et al. Stem Cells Dev. 2007]. We evaluated here the in vitro and in vivo effects of CD26 inhibitor treatment on previously frozen CB CD34+ cells cultured ex vivo with G-CSF, GM-CSF or SCF for 48 hours. We examined CD26 expression by multivariate flow cytometry, CD26 activity using the established chromogenic CD26 substrate, Gly-Pro-p-nitroanilide (Gly-Pro-pNA), and SDF-1α induced migration and adhesion. In vivo, we examined long-term engraftment in NSG (NOD/SCID/IL2Rγnull) immunodeficient mice. After 48 hours of culture with cytokine treatment we observed altered CD26 expression on CD34+ CB cells. There was both an increase in the percentage of CD26+ cells and the mean fluorescence intensity (MFI) of CD26. Additionally, CD26 activity was 1.20, 1.59, 1.58, and 1.65 fold greater after ex vivo culture in untreated, G-CSF, GM-CSF and SCF treated CB CD34+ cells respectively compared to the CD26 activity prior to culture. The increase in CD26 activity as a result of treatment with G-CSF (p≤ 0.01), GM-CSF (p≤ 0.05) or SCF (p≤ 0.01) was significantly higher than the CD26 activity measured in the untreated cells following 48 hours of culture. Post-culture treatment with the CD26 inhibitor, Diprotin A, significantly improved SDF-1α induced migration and adhesion of cultured CD34+ CB cells in vitro, particularly in G-CSF treated cells (p≤ 0.05). Diprotin A treatment of CD34+ CB cells previously treated with G-CSF also significantly increased the long-term in vivo engraftment of stem and progenitor (CD34+CD38-, p=0.032), monocyte (CD14+, p=0.015), and megakaryocyte/platelet (CD61+, p=0.020) cells in the bone marrow of NSG mice. CD26 has been previously shown to cleave SDF-1 (stromal cell-derived factor 1/CXCL12). After cleavage, SDF-1 retains its ability to bind to its receptor (CXCR4) but no longer signals. SDF-1 is a powerful chemoattractant and has been shown to be important in mobilization, homing, and engraftment of HSCs and HPCs. This study demonstrates the influence of ex vivo culture and the effect of cytokine treatment on CD26 activity and subsequent biologic function related to HSCT. All three cytokines studied caused a significant increase in enzymatic activity at 48 hours compared to untreated cells. The up-regulation of CD26 protein expression caused by cytokine treatment for 48 hours, in particular G-CSF, had a significant impact on SDF-1 stimulated migration and adhesion. This was demonstrated in vitro by the improvement in cell function after CD26 inhibitor treatment and in vivo by the improved engraftment seen in the G-CSF treated cells with CD26 inhibitor treatment. These experiments suggest that combining CD26 inhibitor treatment following culture with G-CSF treatment during culture has the greatest overall benefit in engraftment outcome. By increasing our understanding of the effects of exogenous cytokines during culture on trafficking, ex vivo expanded CB has the potential to become a more effective means of not only increasing numbers of CB HSC/HPCs but also engraftment outcomes. This would ultimately allow expanded cord blood to become a more viable option for HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3723-3723
Author(s):  
Zheng Hu ◽  
Yong-Guang Yang

Abstract Abstract 3723 An animal model supporting human erythropoiesis will be highly valuable for assessing the biological function of human RBCs under physiological and disease settings, and for evaluating protocols of in vitro RBC differentiation from human embryonic stem cells. Although immunodeficient mice on the NOD background have been widely used to study human hematopoietic stem cell function in vivo, the successful use of these mice in the study of human erythropoiesis and RBC function has not been reported. We have previously shown that co-transplantation of human fetal thymic tissue (under renal capsule) and CD34+ fetal liver cells (FLCs; i.v.) in NOD/SCID or NOD/SCID/γc−/− mice results in the development of multilineage human hematopoietic cells. Here, we analyzed human RBC reconstitution in these humanized mice. Although a large number of human erythrocytes, which consisted predominantly of immature nucleated erythrocytes, were detected in the bone marrow of human fetal thymus/CD34+ FLC-grafted mice, human RBCs were undetectable in blood of these mice, even in those with nearly full human chimerism in peripheral blood mononuclear cells (PBMCs). Recipient mouse macrophage-mediated rejection is, at least, one of the major mechanisms responsible for the lack of human RBCs in these mice, as human RBCs became detectable in blood following macrophage depletion and disappeared again after withdrawal of treatment. Furthermore, treatment with human erythropoietin (EPO) and human IL-3 significantly increased human RBC reconstitution in mice that were depleted of macrophages. Like the human RBCs developed in the humanized mice, exogenously injected normal human RBCs were also rapidly rejected by macrophages in NOD/SCID mice. Taken together, our data demonstrate that human RBCs are highly susceptible to rejection by macrophages in immunodeficient mice. Thus, strategies for preventing human RBC rejection by macrophages are required for using immunodeficient mice as an in vivo model to study human erythropoiesis and RBC function. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 211-211
Author(s):  
Amber Hogart ◽  
Jens Lichtenberg ◽  
Subramanian Ajay ◽  
Elliott Margulies ◽  
David M. Bodine

Abstract Abstract 211 The hematopoietic system is ideal for the study of epigenetic changes in primary cells because hematopoietic cells representing distinct stages of hematopoiesis can be enriched and isolated by differences in surface marker expression. DNA methylation is an essential epigenetic mark that is required for normal development. Conditional knockout of the DNA methyltransferase enzymes in the mouse hematopoietic compartment have revealed that methylation is critical for long-term renewal and lineage differentiation of hematopoietic stem cells (Broske et al 2009, Trowbridge el al 2009). To better understand the role of DNA methylation in self-renewal and differentiation of hematopoietic cells, we characterized genome-wide DNA methylation in primary cells representing three distinct stages of hematopoiesis. We isolated mouse hematopoietic stem cells (HSC; Lin- Sca-1+ c-kit+), common myeloid progenitor cells (CMP; Lin- Sca-1- c-kit+), and erythroblasts (ERY; CD71+ Ter119+). Methyl Binding Domain Protein 2 (MBD2) is an endogenous reader of DNA methylation that recognizes DNA with a high concentration of methylated CpG residues. Recombinant MBD2 enrichment of DNA followed by massively-parallel sequencing was used to map and compare genome-wide DNA methylation patterns in HSC, CMP and ERY. Two biological replicates were sequenced for each cell type with total read counts ranging from 32,309,435–46,763,977. Model-based analysis of ChIP Seq (MACS) with a significance cutoff of p<10−5 was used to determine statistically significant peaks of methylation in each replicate. Globally, the number of methylation peaks was highest in HSC (85,797peaks), lower in CMP (50,638 peaks), and lowest in ERY (27,839 peaks). Comparison of the peaks in HSC, CMP and ERY revealed that only 2% of the peaks in CMP or ERY are absent in HSC indicating that the vast majority of methylation in HSC is lost during differentiation. Comparison of methylation with genomic features revealed that CpG islands associated with promoters are hypomethylated, while many non-promoter CpG islands are methylated. Furthermore, methylation of non-promoter associated CpG islands occurs infrequently in cell-type specific peaks but is more abundant in common methylation peaks. When the DNA methylation patterns were compared to mRNA expression, we found that as expected, proximal promoter sequences of expressed genes were hypomethylated in all three cell types, while methylation in the gene body positively correlated with gene expression in HSC and CMP. Utilizing de novo motif discovery we found a subset of transcription factor consensus binding motifs that were overrepresented in methylated sequences. Motifs for several ETS transcription factors, including GABPalpha and ELF1 were found to be overrepresented in cell-type specific as well as common methylated regions. Other transcription factor consensus sites, such as the NFAT factors involved in T-cell activation, were specifically overrepresented in the methylated promoter regions of CMP and ERY. Comparison of our methylation data with the occupancy of hematopoietic transcription factors in the HPC7 cell line, which is similar to CMP (Wilson et al 2010), revealed a significant anti-correlation between DNA methylation and the binding of Fli1, Lmo2, Lyl1, Runx1, and Scl. Our genome-wide survey provides new insights into the role of DNA methylation in hematopoiesis. Firstly, the methylation of CpG islands is associated with the most primitive hematopoietic cells and is unlikely to drive hematopoietic differentiation. We feel that the elevated genome-wide DNA methylation in HSC compared to CMP and ERY, combined with the positive association between gene body methylation and gene expression demonstrates that DNA methylation is a mark of cellular plasticity in HSC. Finally, the finding that transcription factor binding sites are over represented in the methylated sequences of the genome leads us to conclude that DNA methylation modulates key hematopoietic transcription factor programs that regulate hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4815-4815
Author(s):  
Haruko Tashiro ◽  
Ryosuke Shirasaki ◽  
Yoko Oka ◽  
Tadashi Yamamoto ◽  
Nobu Akiyama ◽  
...  

Abstract Abstract 4815 Background and Aims: We reported that acute myelogenous leukemia blasts and chronic myelogenous leukemia cells converted to stromal myofibroblasts to create an environment for the proliferation of leukemic cells in vitro and also in a non-obese diabetes/ severe combined immunodeficiency (NOD/SCID) murine bone-marrow in vivo. In normal hematopoiesis, hematopoietic stem cell (HSC) and stromal immature mesenchymal stem cell (MSC) are speculated to have a cross-talk, and some reports indicate that the HSC generates MSC, and also a specific fraction of MSC shares similar molecular expressions to that of HSC. We made a hypothesis that HSC might be generated from MSC. To make clear this issue, expression cloning was performed to isolate a molecule that stimulated bone-marrow stromal myofibroblasts to express hematopoietic stem cell marker, CD34. And, we also observed the effect of the isolated molecule to an adult human dermal fibroblast (HDF). Materials and Methods: cDNA-expression library was constructed using PHA-P-stimulated normal human blood lymphocytes, and the prepared plasmids were transfected to COS7 cells. After 3 days of culture, supernatants were added to the normal human bone-marrow-derived myofibroblasts (final 10%), and cells were further cultured for one week. RNA was extracted from the cultured myofibroblasts, and cDNA was synthesized. Positive clones were selected on CD34-expression with reverse transcription-polymerase chain reaction, and a single clone was isolated. The purified protein from the isolated single clone was added to HDF-culture, and the morphological changes and the expression of specific hematopoiesis-related proteins were analyzed. Results and Discussion: Isolated single clone was human interleukin 1β (IL-1β). When the purified IL-1β protein was added to the bone-marrow-derived myofibroblast cultures, cell growth was increased, and up-regulation of the expression of several hematopoietic specific proteins, including cytokine receptors and transcription factor SCL, was observed. Based on these observations, we determined the effect of IL-1β to HDF. When HDFs were cultured with human IL-1β for 3 weeks, the expression of granulocyte colony-stimulating factor (G-CSF)-receptor, and SCL was increased. When these IL-1β-stimulated cells were cultured in a non-coated dish, cells were floating, and budding of the cells was also observed. When HDF were cultured with IL-1β for 3 weeks, and then G-CSF and erythropoietin were added to the cultures, expression of transcription factor GATA-1 and CEBPA was significantly increased after one week. These observations indicate that IL-1β can stimulate to induce HDF toward hematopoietic cells. Now we determine the precise actions of human IL-1β to HDF using NOD/SCID transplantation model in vivo. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document