scholarly journals Evolution of the D. melanogaster chromatin landscape and its associated proteins

2018 ◽  
Author(s):  
Elise Parey ◽  
Anton Crombach

AbstractIn the nucleus of eukaryotic cells, genomic DNA associates with numerous protein complexes and RNAs, forming the chromatin landscape. Through a genome-wide study of chromatin-associated proteins in Drosophila cells, five major chromatin types were identified as a refinement of the traditional binary division into hetero- and euchromatin. These five types are defined by distinct but overlapping combinations of proteins and differ in biological and biochemical properties, including transcriptional activity, replication timing and histone modifications. In this work, we assess the evolutionary relationships of chromatin-associated proteins and present an integrated view of the evolution and conservation of the fruit fly D. melanogaster chromatin landscape. We combine homology prediction across a wide range of species with gene age inference methods to determine the origin of each chromatin-associated protein. This provides insight into the emergence of the different chromatin types. Our results indicate that the two euchromatic types, YELLOW and RED, were one single activating type that split early in eukaryotic history. Next, we provide evidence that GREEN-associated proteins are involved in a centromere drive and expanded in a lineage-specific way in D. melanogaster. Our results on BLUE chromatin support the hypothesis that the emergence of Polycomb Group proteins is linked to eukaryotic multicellularity. In light of these results, we discuss how the regulatory complexification of chromatin links to the origins of eukaryotic multicellularity.

2017 ◽  
Author(s):  
Pawel Mikulski ◽  
Mareike L. Hohenstatt ◽  
Sara Farrona ◽  
Cezary Smaczniak ◽  
Kerstin Kaufmann ◽  
...  

AbstractPolycomb group (PcG) proteins facilitate chromatin-mediated gene repression through the modification of histone tails in a wide range of eukaryotes, including plants and animals. One of the PcG protein complexes, Polycomb Repressive Complex 2 (PRC2), promotes repressive chromatin formation via tri-methylation of lysine-27 on histone H3 (H3K27me3). The animal PRC2 is implicated in impacting subnuclear distribution of chromatin as its complex components and H3K27me3 are functionally connected with the nuclear lamina (NL) - a peripheral protein mesh that resides underneath the inner nuclear membrane (INM) and consists of lamins and lamina-associated proteins. In contrast to animals, NL in plants has an atypical structure and its association with PRC2-mediated gene repression is largely unknown. Here, we present a connection between lamin-like protein, CROWDED NUCLEI 1 (CRWN1), and a novel PRC2-associated component, PWWP INTERACTOR OF POLYCOMBS 1 (PWO1), inArabidopsis thaliana. We show that PWO1 and CRWN1 proteins associate physically with each other, act in the same pathway to maintain nuclear morphology and control expression of similar set of target genes. Moreover, we demonstrate that PWO1 proteins form speckle-like foci located partially at the subnuclear periphery inNicotiana benthamianaandArabidopsis thaliana. Ultimately, as CRWN1 and PWO1 are plant-specific, our results argue that plants developed an equivalent, rather than homologous, mechanism of linking PRC2-mediated chromatin repression and nuclear lamina.


2020 ◽  
Vol 21 (22) ◽  
pp. 8594
Author(s):  
Zhuangzhuang Geng ◽  
Zhonghua Gao

Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.


2013 ◽  
Vol 41 (6) ◽  
pp. 1468-1474 ◽  
Author(s):  
Corinna Richter ◽  
Peter C. Fineran

CRISPR (clustered regularly interspaced short palindromic repeats) arrays and Cas (CRISPR-associated) proteins confer acquired resistance against mobile genetic elements in a wide range of bacteria and archaea. The phytopathogen Pectobacterium atrosepticum SCRI1043 encodes a single subtype I-F CRISPR system, which is composed of three CRISPR arrays and the cas operon encoding Cas1, Cas3 (a Cas2–Cas3 fusion), Csy1, Csy2, Csy3 and Cas6f (Csy4). The CRISPR arrays are transcribed into pre-crRNA (CRISPR RNA) and then processed by Cas6f to generate crRNAs. Furthermore, the formation of Cas protein complexes has been implicated in both the interference and acquisition stages of defence. In the present paper, we discuss the development of tightly controlled ‘programmable’ CRISPR arrays as tools to investigate CRISPR–Cas function and the effects of chromosomal targeting. Finally, we address how chromosomal targeting by CRISPR–Cas can cause large-scale genome deletions, which can ultimately influence bacterial evolution and pathogenicity.


2017 ◽  
Author(s):  
Sarina R. Cameron ◽  
Soumyadeep Nandi ◽  
Tatyana G. Kahn ◽  
Juan I. Barrasa ◽  
Per Stenberg ◽  
...  

AbstractPolycomb Group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how PRC1 and PRC2 are targeted to specific genes is poorly understood. Here we establish the Cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that coordinated recruitment of PRC1 and PRC2 complexes to CCND2 involves a combination of a specialized PRC1 targeting element (PTE) and an adjacent CpG-island, which together act as a human Polycomb Response Element. Chromatin immunoprecipitation analysis of CCND2 in different transcriptional states indicates that histone modifications produced by PRC1 and PRC2 are not sufficient to recruit either of the complexes. However, catalytic activity of PRC2 helps to anchor PRC1 at the PTE. Our analyses suggest that coordinated targeting of PRC1 and PRC2 complexes by juxtaposed AT-rich PTEs and CpG-islands may be a general feature of Polycomb repression in mammals.


2005 ◽  
Vol 392 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Heath Ecroyd ◽  
Maya Belghazi ◽  
Jean-Louis Dacheux ◽  
Jean-Luc Gatti

We have shown previously that a ‘soluble’ form of PrP (prion protein), not associated with membranous vesicles, exists in the male reproductive fluid [Ecroyd, Sarradin, Dacheux and Gatti (2004) Biol. Reprod. 71, 993–1001]. Attempts to purify this ‘soluble’ PrP indicated that it behaves like a high-molecular-mass complex of more than 350 kDa and always co-purified with the same set of proteins. The main associated proteins were sequenced by MS and were found to match to clusterin (apolipoprotein J), BPI (bacterial permeability-increasing protein), carboxylesterase-like urinary excreted protein (cauxin), β-mannosidase and β-galactosidase. Immunoblotting and enzymatic assay confirmed the presence of clusterin and a cauxin-like protein and showed that a 17 kDa hydrophobic epididymal protein was also associated with this complex. These associated proteins were not separated by a high ionic strength treatment but were by 2-mercaptoethanol, probably due to its action on reducing disulphide bonds that maintain the interaction of components of the complex. Our results suggest that the associated PrP retains its GPI (glycosylphosphatidylinositol) anchor, in contrast with brain-derived PrP, and that it is resistant to cleavage by phosphatidylinositol-specific phospholipase C. Based on these results, the identity of the associated proteins and the overall biochemical properties of this protein ensemble, we suggest that ‘soluble’ PrP can form protein complexes that are maintained by hydrophobic interactions, in a similar manner to lipoprotein vesicles or micellar complexes.


2001 ◽  
Vol 21 (4) ◽  
pp. 1360-1369 ◽  
Author(s):  
David P. E. Satijn ◽  
Karien M. Hamer ◽  
Jan den Blaauwen ◽  
Arie P. Otte

ABSTRACT Polycomb group (PcG) proteins form multimeric protein complexes which are involved in the heritable stable repression of genes. Previously, we identified two distinct human PcG protein complexes. The EED-EZH protein complex contains the EED and EZH2 PcG proteins, and the HPC-HPH PcG complex contains the HPC, HPH, BMI1, and RING1 PcG proteins. Here we show that YY1, a homolog of theDrosophila PcG protein pleiohomeotic (Pho), interacts specificially with the human PcG protein EED but not with proteins of the HPC-HPH PcG complex. Since YY1 and Pho are DNA-binding proteins, the interaction between YY1 and EED provides a direct link between the chromatin-associated EED-EZH PcG complex and the DNA of target genes. To study the functional significance of the interaction, we expressed the Xenopus homologs of EED and YY1 inXenopus embryos. Both Xeed and XYY1 induce an ectopic neural axis but do not induce mesodermal tissues. In contrast, members of the HPC-HPH PcG complex do not induce neural tissue. The exclusive, direct neuralizing activity of both the Xeed and XYY1 proteins underlines the significance of the interaction between the two proteins. Our data also indicate a role for chromatin-associated proteins, such as PcG proteins, in Xenopus neural induction.


2016 ◽  
pp. 126-129
Author(s):  
M. Makarenko ◽  
◽  
D. Hovsyeyev ◽  
L. Sydoryk ◽  
◽  
...  

Different kinds of physiological stress cause mass changes in the cells, including the changes in the structure and function of the protein complexes and in separate molecules. The protein functions is determined by its folding (the spatial conclusion), which depends on the functioning of proteins of thermal shock- molecular chaperons (HSPs) or depends on the stress proteins, that are high-conservative; specialized proteins that are responsible for the correct proteinaceous folding. The family of the molecular chaperones/ chaperonins/ Hsp60 has a special place due to the its unique properties of activating the signaling cascades through the system of Toll-like receptors; it also stimulates the cells to produce anti- inflammatory cytokines, defensins, molecules of cell adhesion and the molecules of MHC; it functions as the intercellular signaling molecule. The pathological role of Hsp60 is established in a wide range of illnesses, from diabetes to atherosclerosis, where Hsp60 takes part in the regulation of both apoptosis and the autoimmune processes. The presence of the HSPs was found in different tissues that are related to the reproductive system. Key words: molecular chaperons (HSPs), Toll-like receptors, reproductive function, natural auto antibody.


2017 ◽  
Vol 86 (3) ◽  
Author(s):  
Susan L. Brockmeier ◽  
Crystal L. Loving ◽  
Tracy L. Nicholson ◽  
Jinhong Wang ◽  
Sarah E. Peters ◽  
...  

ABSTRACT Streptococcus suis is a bacterium that is commonly carried in the respiratory tract and that is also one of the most important invasive pathogens of swine, commonly causing meningitis, arthritis, and septicemia. Due to the existence of many serotypes and a wide range of immune evasion capabilities, efficacious vaccines are not readily available. The selection of S. suis protein candidates for inclusion in a vaccine was accomplished by identifying fitness genes through a functional genomics screen and selecting conserved predicted surface-associated proteins. Five candidate proteins were selected for evaluation in a vaccine trial and administered both intranasally and intramuscularly with one of two different adjuvant formulations. Clinical protection was evaluated by subsequent intranasal challenge with virulent S. suis . While subunit vaccination with the S. suis proteins induced IgG antibodies to each individual protein and a cellular immune response to the pool of proteins and provided substantial protection from challenge with virulent S. suis , the immune response elicited and the degree of protection were dependent on the parenteral adjuvant given. Subunit vaccination induced IgG reactive against different S. suis serotypes, indicating a potential for cross protection.


2021 ◽  
Vol 9 (2) ◽  
pp. 348
Author(s):  
Florian Tagini ◽  
Trestan Pillonel ◽  
Claire Bertelli ◽  
Katia Jaton ◽  
Gilbert Greub

The Mycobacterium kansasii species comprises six subtypes that were recently classified into six closely related species; Mycobacterium kansasii (formerly M. kansasii subtype 1), Mycobacterium persicum (subtype 2), Mycobacterium pseudokansasii (subtype 3), Mycobacterium ostraviense (subtype 4), Mycobacterium innocens (subtype 5) and Mycobacterium attenuatum (subtype 6). Together with Mycobacterium gastri, they form the M. kansasii complex. M. kansasii is the most frequent and most pathogenic species of the complex. M. persicum is classically associated with diseases in immunosuppressed patients, and the other species are mostly colonizers, and are only very rarely reported in ill patients. Comparative genomics was used to assess the genetic determinants leading to the pathogenicity of members of the M. kansasii complex. The genomes of 51 isolates collected from patients with and without disease were sequenced and compared with 24 publicly available genomes. The pathogenicity of each isolate was determined based on the clinical records or public metadata. A comparative genomic analysis showed that all M. persicum, M. ostraviense, M innocens and M. gastri isolates lacked the ESX-1-associated EspACD locus that is thought to play a crucial role in the pathogenicity of M. tuberculosis and other non-tuberculous mycobacteria. Furthermore, M. kansasii was the only species exhibiting a 25-Kb-large genomic island encoding for 17 type-VII secretion system-associated proteins. Finally, a genome-wide association analysis revealed that two consecutive genes encoding a hemerythrin-like protein and a nitroreductase-like protein were significantly associated with pathogenicity. These two genes may be involved in the resistance to reactive oxygen and nitrogen species, a required mechanism for the intracellular survival of bacteria. Three non-pathogenic M. kansasii lacked these genes likely due to two distinct distributive conjugal transfers (DCTs) between M. attenuatum and M. kansasii, and one DCT between M. persicum and M. kansasii. To our knowledge, this is the first study linking DCT to reduced pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document