scholarly journals Seasonal variation of fermentation rate inSaccharomyces spp. (Ascomycota)?

2018 ◽  
Author(s):  
Dagmar Tiefenbrunner ◽  
Helmut Gangl ◽  
Ksenija Lopandic ◽  
Wolfgang Tiefenbrunner

AbstractYeast species of the genusSaccharomycesshow some reaction to visible light – although they lack photo pigments and the typical clock genes of fungi – that can be explained by damage of the cytochrome electron transport chain of the mitochondria. Evidence for a circadian clock, entrainable by cyclic environmental stimuli, exists for periodic changing temperature and light as zeitgeber. Whether seasonality follows from the existence of a circadian clock – which is a necessary requirement for annual rhythms – remains unknown.Due to an accidental observation, we were able to show that fermentation taking place in complete darkness and at constant temperature is influenced in some yeast strains by the history of the inoculum culture. Using yeast cultures growing on agar plates and exposed to diffuse daylight for three weeks either in March or in May as inoculum, leads to significantly different fermentation rates in the inoculated grape juice in both months: rates are higher in March when day length is shorter than in May. In must inoculated with cultures that grew in darkness or daylight, respectively, higher fermentation rates occur by the former. Other yeast strains react to artificial white light in the same way.We used strains ofS. cerevisiae, S. eubayanus, S. kudriavzevii, S. uvarumand furthermore hybrid strains of two or even three of these species. The most pronounced reaction to daylight was shown by theS. eubayanusxS. uvarumxS. cerevisiaehybrid, followed byS. cerevisiaexS. kudriavzeviihybrids,S. eubayanusandS. cerevisiae. S. uvarumwas sensitive to artificial white light.These observations can hardly be explained by some kind of photo damage because they base on an effect that persists through many cell division cycles after yeasts were exposed to light. If it really represents seasonality epigenetic memory is likely involved, since fermentation lasts for many days and yeast generations. If the existence of a circadian clock and seasonal behaviour inSaccharomycesis confirmed these yeasts could become an important tool in basic research concerning epigenetic memory.

2016 ◽  
Author(s):  
He Huang ◽  
Dmitri A. Nusinow

AbstractIn Arabidopsis thaliana, an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review, we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as day-length dependent and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anke Schwarzenberger ◽  
Luxi Chen ◽  
Linda C. Weiss

AbstractDiapause is a mechanism necessary for survival in arthropods. Often diapause induction and resurrection is light-dependent and therefore dependent on the photoperiod length and on the number of consecutive short-days. In many organisms, including the microcrustacean Daphnia magna, one functional entity with the capacity to measure seasonal changes in day-length is the circadian clock. There is a long-standing discussion that the circadian clock also controls photoperiod-induced diapause. We tested this hypothesis in D. magna, an organism which goes into a state of suspended animation with the shortening of the photoperiod. We measured gene expression of clock genes in diapause-destined embryos of D. magna in the initiation, resting and resurrection phases and checked it against gene expression levels of continuously developing embryos. We demonstrate that some genes of the clock are differentially expressed during diapause induction but not during its maintenance. Furthermore, the photoreceptor gene cry2 and the clock-associated gene brp are highly expressed during induction and early diapause, probably in order to produce excess mRNA to prepare for immediate resurrection. After resurrection, both types of embryos show a similar pattern of gene expression during development. Our study contributes significantly to the understanding of the molecular basis of diapause induction, maintenance and termination.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Yury A Barbitoff ◽  
Andrew G Matveenko ◽  
Anton B Matiiv ◽  
Evgeniia M Maksiutenko ◽  
Svetlana E Moskalenko ◽  
...  

Abstract Thousands of yeast genomes have been sequenced with both traditional and long-read technologies, and multiple observations about modes of genome evolution for both wild and laboratory strains have been drawn from these sequences. In our study, we applied Oxford Nanopore and Illumina technologies to assemble complete genomes of two widely used members of a distinct laboratory yeast lineage, the Peterhof Genetic Collection (PGC), and investigate the structural features of these genomes including transposable element content, copy number alterations, and structural rearrangements. We identified numerous notable structural differences between genomes of PGC strains and the reference S288C strain. We discovered a substantial enrichment of mid-length insertions and deletions within repetitive coding sequences, such as in the SCH9 gene or the NUP100 gene, with possible impact of these variants on protein amyloidogenicity. High contiguity of the final assemblies allowed us to trace back the history of reciprocal unbalanced translocations between chromosomes I, VIII, IX, XI, and XVI of the PGC strains. We show that formation of hybrid alleles of the FLO genes during such chromosomal rearrangements is likely responsible for the lack of invasive growth of yeast strains. Taken together, our results highlight important features of laboratory yeast strain evolution using the power of long-read sequencing.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yanlei Yue ◽  
Ze Jiang ◽  
Enoch Sapey ◽  
Tingting Wu ◽  
Shi Sun ◽  
...  

Abstract Background In soybean, some circadian clock genes have been identified as loci for maturity traits. However, the effects of these genes on soybean circadian rhythmicity and their impacts on maturity are unclear. Results We used two geographically, phenotypically and genetically distinct cultivars, conventional juvenile Zhonghuang 24 (with functional J/GmELF3a, a homolog of the circadian clock indispensable component EARLY FLOWERING 3) and long juvenile Huaxia 3 (with dysfunctional j/Gmelf3a) to dissect the soybean circadian clock with time-series transcriptomal RNA-Seq analysis of unifoliate leaves on a day scale. The results showed that several known circadian clock components, including RVE1, GI, LUX and TOC1, phase differently in soybean than in Arabidopsis, demonstrating that the soybean circadian clock is obviously different from the canonical model in Arabidopsis. In contrast to the observation that ELF3 dysfunction results in clock arrhythmia in Arabidopsis, the circadian clock is conserved in soybean regardless of the functional status of J/GmELF3a. Soybean exhibits a circadian rhythmicity in both gene expression and alternative splicing. Genes can be grouped into six clusters, C1-C6, with different expression profiles. Many more genes are grouped into the night clusters (C4-C6) than in the day cluster (C2), showing that night is essential for gene expression and regulation. Moreover, soybean chromosomes are activated with a circadian rhythmicity, indicating that high-order chromosome structure might impact circadian rhythmicity. Interestingly, night time points were clustered in one group, while day time points were separated into two groups, morning and afternoon, demonstrating that morning and afternoon are representative of different environments for soybean growth and development. However, no genes were consistently differentially expressed over different time-points, indicating that it is necessary to perform a circadian rhythmicity analysis to more thoroughly dissect the function of a gene. Moreover, the analysis of the circadian rhythmicity of the GmFT family showed that GmELF3a might phase- and amplitude-modulate the GmFT family to regulate the juvenility and maturity traits of soybean. Conclusions These results and the resultant RNA-seq data should be helpful in understanding the soybean circadian clock and elucidating the connection between the circadian clock and soybean maturity.


2021 ◽  
pp. 102866
Author(s):  
Kun Xiang ◽  
Zhiwei Xu ◽  
Yu-Qian Hu ◽  
Yi-Sheng He ◽  
Guo-Cui Wu ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 676
Author(s):  
Andy W. C. Man ◽  
Huige Li ◽  
Ning Xia

Every organism has an intrinsic biological rhythm that orchestrates biological processes in adjusting to daily environmental changes. Circadian rhythms are maintained by networks of molecular clocks throughout the core and peripheral tissues, including immune cells, blood vessels, and perivascular adipose tissues. Recent findings have suggested strong correlations between the circadian clock and cardiovascular diseases. Desynchronization between the circadian rhythm and body metabolism contributes to the development of cardiovascular diseases including arteriosclerosis and thrombosis. Circadian rhythms are involved in controlling inflammatory processes and metabolisms, which can influence the pathology of arteriosclerosis and thrombosis. Circadian clock genes are critical in maintaining the robust relationship between diurnal variation and the cardiovascular system. The circadian machinery in the vascular system may be a novel therapeutic target for the prevention and treatment of cardiovascular diseases. The research on circadian rhythms in cardiovascular diseases is still progressing. In this review, we briefly summarize recent studies on circadian rhythms and cardiovascular homeostasis, focusing on the circadian control of inflammatory processes and metabolisms. Based on the recent findings, we discuss the potential target molecules for future therapeutic strategies against cardiovascular diseases by targeting the circadian clock.


2015 ◽  
Vol 5 (3) ◽  
pp. 4-11
Author(s):  
Adam Rogers

The city of Los Angeles is converting its streetlights from orange-gold sodium vapor technology to cold, white light-emitting diodes. It’s a transition that will change the color of the city at night, in a place with a long history of experimentation with artificial lighting technology. That means not only that the city will appear different, but it will no longer correspond to memories of its coloration, or to its depictions in famous films.


Sign in / Sign up

Export Citation Format

Share Document