Into the Evening: Complex Interactions in the Arabidopsis circadian clock

2016 ◽  
Author(s):  
He Huang ◽  
Dmitri A. Nusinow

AbstractIn Arabidopsis thaliana, an assembly of proteins named the evening complex (EC) has been established as an essential component of the circadian clock with conserved functions in regulating plant growth and development. Recent studies identifying EC-regulated genes and EC-interacting proteins have expanded our understanding of EC function. In this review, we focus on new progress uncovering how the EC contributes to the circadian network through the integration of environmental inputs and the direct regulation of key clock genes. We also summarize new findings of how the EC directly regulates clock outputs, such as day-length dependent and thermoresponsive growth, and provide new perspectives on future experiments to address unsolved questions related to the EC.

2011 ◽  
Vol 30 (1) ◽  
pp. 355-366 ◽  
Author(s):  
Niki Mougiou ◽  
Stylianos Poulios ◽  
Athanasios Kaldis ◽  
Konstantinos E. Vlachonasios

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e10961
Author(s):  
Bin Tan ◽  
Liu Yan ◽  
Huannan Li ◽  
Xiaodong Lian ◽  
Jun Cheng ◽  
...  

Background Heat shock factors (HSFs) play important roles during normal plant growth and development and when plants respond to diverse stressors. Although most studies have focused on the involvement of HSFs in the response to abiotic stresses, especially in model plants, there is little research on their participation in plant growth and development or on the HSF (PpHSF) gene family in peach (Prunus persica). Methods DBD (PF00447), the HSF characteristic domain, was used to search the peach genome and identify PpHSFs. Phylogenetic, multiple alignment and motif analyses were conducted using MEGA 6.0, ClustalW and MEME, respectively. The function of PpHSF5 was confirmed by overexpression of PpHSF5 into Arabidopsis. Results Eighteen PpHSF genes were identified within the peach genome. The PpHSF genes were nonuniformly distributed on the peach chromosomes. Seventeen of the PpHSFs (94.4%) contained one or two introns, except PpHSF18, which contained three introns. The in silico-translated PpHSFs were classified into three classes (PpHSFA, PpHSFB and PpHSFC) based on multiple alignment, motif analysis and phylogenetic comparison with HSFs from Arabidopsis thaliana and Oryza sativa. Dispersed gene duplication (DSD at 67%) mainly contributed to HSF gene family expansion in peach. Promoter analysis showed that the most common cis-elements were the MYB (abiotic stress response), ABRE (ABA-responsive) and MYC (dehydration-responsive) elements. Transcript profiling of 18 PpHSFs showed that the expression trend of PpHSF5 was consistent with shoot length changes in the cultivar ‘Zhongyoutao 14’. Further analysis of the PpHSF5 was conducted in 5-year-old peach trees, Nicotiana benthamiana and Arabidopsis thaliana, respectively. Tissue-specific expression analysis showed that PpHSF5 was expressed predominantly in young vegetative organs (leaf and apex). Subcellular localization revealed that PpHSF5 was located in the nucleus in N. benthamiana cells. Two transgenic Arabidopsis lines were obtained that overexpressed PpHSF5. The root length and the number of lateral roots in the transgenic seedlings were significantly less than in WT seedlings and after cultivation for three weeks. The transgenic rosettes were smaller than those of the WT at 2–3 weeks. The two transgenic lines exhibited a dwarf phenotype three weeks after transplanting, although there was no significant difference in the number of internodes. Moreover, the PpHSF5-OE lines exhibited enhanced thermotolerance. These results indicated that PpHSF5 might be act as a suppresser of growth and development of root and aerial organs.


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Ruben Puga-Freitas ◽  
Samir Abbad ◽  
Agnès Gigon ◽  
Evelyne Garnier-Zarli ◽  
Manuel Blouin

Some soil microorganisms are involved in the complex interactions with plants and earthworms, through the production of indole acetic acid (IAA) which modifies plant growth and development. In a factorial experiment testing the impact of the presence/absence of plants and earthworms on IAA production by cultivable bacteria, we observed that plants were decreasing IAA production of 43%, whereas earthworms were increasing it of 46%. In the presence of both plant and earthworms, IAA production was as low as in the presence of plant control, showing that plants influence on IAA production by microorganisms prevails on earthworm influence. We discuss functional reasons which could explain this result.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3146 ◽  
Author(s):  
Weigui Luo ◽  
Yuan Xiao ◽  
Qiwen Liang ◽  
Yi Su ◽  
Langtao Xiao

Small signaling peptides (SSPs) are a class of short peptides playing critical roles in plant growth and development. SSPs are also involved in the phytohormone signaling pathway. However, identification of mature SSPs is still a technical challenge because of their extremely low concentrations in plant tissue and complicated interference by many other metabolites. Here, we report an optimized protocol to extract SSPs based on protoplast extraction and to analyze SSPs based on tandem mass spectrometry peptidomics. Using plant protoplasts as the material, soluble peptides were directly extracted into phosphate buffer. The interference of non-signaling peptides was significantly decreased. Moreover, we applied the protocol to identify potential SSPs in auxin treated wild type and auxin biosynthesis defective mutant yuc2yuc6. Over 100 potential SSPs showed a response to auxin in Arabidopsis thaliana.


2018 ◽  
Author(s):  
Dagmar Tiefenbrunner ◽  
Helmut Gangl ◽  
Ksenija Lopandic ◽  
Wolfgang Tiefenbrunner

AbstractYeast species of the genusSaccharomycesshow some reaction to visible light – although they lack photo pigments and the typical clock genes of fungi – that can be explained by damage of the cytochrome electron transport chain of the mitochondria. Evidence for a circadian clock, entrainable by cyclic environmental stimuli, exists for periodic changing temperature and light as zeitgeber. Whether seasonality follows from the existence of a circadian clock – which is a necessary requirement for annual rhythms – remains unknown.Due to an accidental observation, we were able to show that fermentation taking place in complete darkness and at constant temperature is influenced in some yeast strains by the history of the inoculum culture. Using yeast cultures growing on agar plates and exposed to diffuse daylight for three weeks either in March or in May as inoculum, leads to significantly different fermentation rates in the inoculated grape juice in both months: rates are higher in March when day length is shorter than in May. In must inoculated with cultures that grew in darkness or daylight, respectively, higher fermentation rates occur by the former. Other yeast strains react to artificial white light in the same way.We used strains ofS. cerevisiae, S. eubayanus, S. kudriavzevii, S. uvarumand furthermore hybrid strains of two or even three of these species. The most pronounced reaction to daylight was shown by theS. eubayanusxS. uvarumxS. cerevisiaehybrid, followed byS. cerevisiaexS. kudriavzeviihybrids,S. eubayanusandS. cerevisiae. S. uvarumwas sensitive to artificial white light.These observations can hardly be explained by some kind of photo damage because they base on an effect that persists through many cell division cycles after yeasts were exposed to light. If it really represents seasonality epigenetic memory is likely involved, since fermentation lasts for many days and yeast generations. If the existence of a circadian clock and seasonal behaviour inSaccharomycesis confirmed these yeasts could become an important tool in basic research concerning epigenetic memory.


2019 ◽  
Author(s):  
Mingjun Gao ◽  
Feng Geng ◽  
Cornelia Klose ◽  
Anne-Marie Staudt ◽  
He Huang ◽  
...  

SummaryDaylength is a key seasonal cue for animals and plants. In cereals, photoperiodic responses are a major adaptive trait, and alleles of clock genes such as PHOTOPERIOD DEPENDENT1 (PPD1) and EARLY FLOWERING3 (ELF3) have been selected for in breeding barley and wheat for more northern latitudes (Faure et al., 2012; Turner, Beales, Faure, Dunford, & Laurie, 2005). How monocot plants sense photoperiod and integrate this information into growth and development is not well understood. We show that in Brachypodium distachyon, phytochrome C (phyC) acts as a molecular timer, directly communicating information to the circadian clock protein ELF3. In this way, ELF3 levels integrate night length information. ELF3 is a central regulator of photoperiodism in Brachypodium, and elf3 mutants display a constitutive long day transcriptome. Conversely, conditions that result in higher levels of ELF3 suppress long day responses. We are able to show that these effects are direct, as ELF3 and phyC occur in a common complex, and they associate with the promoters of a number of conserved regulators of photoperiodism, including PPD1. Consistent with observations in barley, we are able to show that PPD1 overexpression accelerates flowering in SD and is necessary for rapid flowering in response to LD. These findings provide a conceptual framework for understanding observations in the photoperiodic responses of key crops, including wheat, barley and rice.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anke Schwarzenberger ◽  
Luxi Chen ◽  
Linda C. Weiss

AbstractDiapause is a mechanism necessary for survival in arthropods. Often diapause induction and resurrection is light-dependent and therefore dependent on the photoperiod length and on the number of consecutive short-days. In many organisms, including the microcrustacean Daphnia magna, one functional entity with the capacity to measure seasonal changes in day-length is the circadian clock. There is a long-standing discussion that the circadian clock also controls photoperiod-induced diapause. We tested this hypothesis in D. magna, an organism which goes into a state of suspended animation with the shortening of the photoperiod. We measured gene expression of clock genes in diapause-destined embryos of D. magna in the initiation, resting and resurrection phases and checked it against gene expression levels of continuously developing embryos. We demonstrate that some genes of the clock are differentially expressed during diapause induction but not during its maintenance. Furthermore, the photoreceptor gene cry2 and the clock-associated gene brp are highly expressed during induction and early diapause, probably in order to produce excess mRNA to prepare for immediate resurrection. After resurrection, both types of embryos show a similar pattern of gene expression during development. Our study contributes significantly to the understanding of the molecular basis of diapause induction, maintenance and termination.


Sign in / Sign up

Export Citation Format

Share Document