scholarly journals Single-cell chromatin interactions reveal regulatory hubs in dynamic compartmentalized domains

2018 ◽  
Author(s):  
A. Marieke Oudelaar ◽  
James O.J. Davies ◽  
Lars L.P. Hanssen ◽  
Jelena M. Telenius ◽  
Ron Schwessinger ◽  
...  

AbstractThe promoters of mammalian genes are commonly regulated by multiple distal enhancers, which physically interact within discrete chromatin domains. How such domains form and how the regulatory elements within them interact within single cells is not understood. To address this we developed Tri-C, a new Chromosome Conformation Capture (3C) approach to identify concurrent chromatin interactions at individual alleles within single cells. The heterogeneity of interactions observed between such cells shows that CTCF-mediated formation of chromatin domains and interactions within them are dynamic processes. Importantly, our analyses reveal higher-order structures involving simultaneous interactions between multiple enhancers and promoters within individual cells. This provides a structural basis for understanding how multiple cis-elements act together to establish robust regulation of gene expression.

2021 ◽  
Author(s):  
Abrar Aljahani ◽  
Peng Hua ◽  
Magdalena A. Karpinska ◽  
Kimberly Quililan ◽  
James O. J. Davies ◽  
...  

Enhancers and promoters predominantly interact within large-scale topologically associating domains (TADs), which are formed by loop extrusion mediated by cohesin and CTCF. However, it is unclear whether complex chromatin structures exist at sub-kilobase-scale and to what extent fine-scale regulatory interactions depend on loop extrusion. To address these questions, we present an MNase-based chromosome conformation capture (3C) approach, which has enabled us to generate the most detailed local interaction data to date and precisely investigate the effects of cohesin and CTCF depletion on chromatin architecture. Our data reveal that cis-regulatory elements have distinct internal nano-scale structures, within which local insulation is dependent on CTCF, but which are independent of cohesin. In contrast, we find that depletion of cohesin causes a subtle reduction in longer-range enhancer-promoter interactions and that CTCF depletion can cause rewiring of regulatory contacts. Together, our data show that loop extrusion is not essential for enhancer-promoter interactions, but contributes to their robustness and specificity and to precise regulation of gene expression.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
A. Marieke Oudelaar ◽  
Caroline L. Harrold ◽  
Lars L. P. Hanssen ◽  
Jelena M. Telenius ◽  
Douglas R. Higgs ◽  
...  

AbstractSpecific communication between gene promoters and enhancers is critical for accurate regulation of gene expression. However, it remains unclear how specific interactions between multiple regulatory elements contained within a single chromatin domain are coordinated. Recent technological advances which can detect multi-way chromatin interactions at single alleles can provide insights into how multiple regulatory elements cooperate or compete for transcriptional activation. Here, we use such an approach to investigate how interactions of the α-globin enhancers are distributed between multiple promoters in a mouse model in which the α-globin domain is extended to include several additional genes. Our data show that gene promoters do not form mutually exclusive interactions with enhancers, but all interact simultaneously in a single complex. These findings suggest that promoters do not structurally compete for interactions with enhancers, but form a regulatory hub structure, which is consistent with recent models of transcriptional activation occurring in non-membrane bound nuclear compartments.


Author(s):  
Suresh Kumar ◽  
Simardeep Kaur ◽  
Karishma Seem ◽  
Santosh Kumar ◽  
Trilochan Mohapatra

The genome of a eukaryotic organism is comprised of a supra-molecular complex of chromatin fibers and intricately folded three-dimensional (3D) structures. Chromosomal interactions and topological changes in response to the developmental and/or environmental stimuli affect gene expression. Chromatin architecture plays important roles in DNA replication, gene expression, and genome integrity. Higher-order chromatin organizations like chromosome territories (CTs), A/B compartments, topologically associating domains (TADs), and chromatin loops vary among cells, tissues, and species depending on the developmental stage and/or environmental conditions (4D genomics). Every chromosome occupies a separate territory in the interphase nucleus and forms the top layer of hierarchical structure (CTs) in most of the eukaryotes. While the A and B compartments are associated with active (euchromatic) and inactive (heterochromatic) chromatin, respectively, having well-defined genomic/epigenomic features, TADs are the structural units of chromatin. Chromatin architecture like TADs as well as the local interactions between promoter and regulatory elements correlates with the chromatin activity, which alters during environmental stresses due to relocalization of the architectural proteins. Moreover, chromatin looping brings the gene and regulatory elements in close proximity for interactions. The intricate relationship between nucleotide sequence and chromatin architecture requires a more comprehensive understanding to unravel the genome organization and genetic plasticity. During the last decade, advances in chromatin conformation capture techniques for unravelling 3D genome organizations have improved our understanding of genome biology. However, the recent advances, such as Hi-C and ChIA-PET, have substantially increased the resolution, throughput as well our interest in analysing genome organizations. The present review provides an overview of the historical and contemporary perspectives of chromosome conformation capture technologies, their applications in functional genomics, and the constraints in predicting 3D genome organization. We also discuss the future perspectives of understanding high-order chromatin organizations in deciphering transcriptional regulation of gene expression under environmental stress (4D genomics). These might help design the climate-smart crop to meet the ever-growing demands of food, feed, and fodder.


2019 ◽  
Author(s):  
Alan Perez-Rathke ◽  
Qiu Sun ◽  
Boshen Wang ◽  
Valentina Boeva ◽  
Zhifeng Shao ◽  
...  

AbstractChromatin interactions are important for gene regulation and cellular specialization. Emerging evidence suggests many-body spatial interactions can play important roles in condensing super-enhancer regions into a cohesive transcriptional apparatus. Chromosome conformation studies using Hi-C are limited to pairwise, population-averaged interactions; therefore, not suitable for direct assessment of many-body interactions. We describe a computational model, CHROMATIX, that reconstructs structural ensembles based on Hi-C data and identifies significant many-body interactions. For a diverse set of highly-active transcriptional loci with at least 2 super-enhancers, we detail the many-body functional landscape and show DNase-accessibility, POLR2A binding, and decreased H3K27me3 are predictive of interaction-enriched regions.


2019 ◽  
Author(s):  
A. Marieke Oudelaar ◽  
Caroline L. Harrold ◽  
Lars L. P. Hanssen ◽  
Jelena M. Telenius ◽  
Douglas R. Higgs ◽  
...  

AbstractSpecific communication between gene promoters and enhancers is critical for accurate regulation of gene expression. However, it remains unclear how specific interactions between multiple regulatory elements and genes contained within a single chromatin domain are coordinated. Recent technological advances allow for the investigation of multi-way chromatin interactions at single alleles in individual nuclei. This can provide insights into how multiple regulatory elements cooperate or compete for transcriptional activation. We have used these techniques in a mouse model in which the α-globin domain is extended to include several additional genes. This allows us to determine how the interactions of the α-globin super-enhancer are distributed between multiple promoters in a single domain. Our data show that gene promoters do not form mutually exclusive interactions with the super-enhancer, but all interact simultaneously in a single complex. These finding show that promoters within the same domain do not structurally compete for interactions with enhancers, but form a regulatory hub structure, consistent with the recent model of transcriptional activation in phase-separated nuclear condensates.


2019 ◽  
Author(s):  
Yizhou Zhu ◽  
Yousin Suh

AbstractThe resolution limit of chromatin conformation capture methodologies (3Cs) has restrained their application in detection of fine-level chromatin structure mediated by cis-regulatory elements (CREs). Here we report two 3C-derived methods, Tri-4C and Tri-HiC, which utilize mult-restriction enzyme digestions for ultrafine mapping of targeted and genome-wide chromatin interaction, respectively, at up to one hundred basepair resolution. Tri-4C identified CRE loop interaction networks and quantifatively revealed their alterations underlying dynamic gene control. Tri-HiC uncovered global fine-gage regulatory interaction networks, identifying > 20-fold more enhancer:promoter (E:P) loops than in situ HiC. In addition to vasly improved identification of subkilobase-sized E:P loops, Tri-HiC also uncovered interaction stripes and contact domain insulation from promoters and enhancers, revealing their loop extrusion behaviors resembling the topologically-associated domain (TAD) boundaries. Tri-4C and Tri-HiC provide robust approaches to achieve the high resolution interactome maps required for characterizing fine-gage regulatory chromatin interactions in analysis of development, homeostasis and disease.


2017 ◽  
Author(s):  
Teresa R Luperchio ◽  
Michael EG Sauria ◽  
Xianrong Wong ◽  
Marie-Cécile Gaillard ◽  
Peter Tsang ◽  
...  

SummaryNon-random, dynamic three-dimensional organization of the nucleus is important for regulation of gene expression. Numerous studies using chromosome conformation capture strategies have uncovered ensemble organizational principles of individual chromosomes, including organization into active (A) and inactive (B) compartments. In addition, large inactive regions of the genome appear to be associated with the nuclear lamina, the so-called Lamina Associated Domains (LADs). However, the interrelationship between overall chromosome conformation and association of domains with the nuclear lamina remains unclear. In particular, the 3D organization of LADs within the context of the entire chromosome has not been investigated. In this study, we describe “chromosome conformation paints” to determine the relationship in situ between LAD and non-LAD regions of the genome in single cells. We find that LADs organize into constrained and compact regions at the nuclear lamina, and these findings are supported by an integrated analysis of both DamID and Hi-C data. Using a refined algorithm to identify active (A) and inactive (B) compartments from Hi-C data, we demonstrate that the LADs correspond to the B compartment. We demonstrate that in situ single cell chromosome organization is strikingly predicted by integrating both Hi-C and DamID data into a chromosome conformation model. In addition, using the chromosome conformation paints, we demonstrate that LAD (and B-compartment) organization is dependent upon both chromatin state and Lamin A/C. Finally, we demonstrate that small regions within LADs escape the repressive regime at the peripheral zone to interact with the A-compartment and are enriched for both transcription start sites (TSSs) and active enhancers.


2021 ◽  
Vol 7 (2) ◽  
pp. eaba5743
Author(s):  
Haijun Liu ◽  
Mengru M. Zhang ◽  
Daniel A. Weisz ◽  
Ming Cheng ◽  
Himadri B. Pakrasi ◽  
...  

In cyanobacteria and red algae, the structural basis dictating efficient excitation energy transfer from the phycobilisome (PBS) antenna complex to the reaction centers remains unclear. The PBS has several peripheral rods and a central core that binds to the thylakoid membrane, allowing energy coupling with photosystem II (PSII) and PSI. Here, we have combined chemical cross-linking mass spectrometry with homology modeling to propose a tricylindrical cyanobacterial PBS core structure. Our model reveals a side-view crossover configuration of the two basal cylinders, consolidating the essential roles of the anchoring domains composed of the ApcE PB loop and ApcD, which facilitate the energy transfer to PSII and PSI, respectively. The uneven bottom surface of the PBS core contrasts with the flat reducing side of PSII. The extra space between two basal cylinders and PSII provides increased accessibility for regulatory elements, e.g., orange carotenoid protein, which are required for modulating photochemical activity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong Wang ◽  
Aiping Duan ◽  
Jing Zhang ◽  
Qi Wang ◽  
Yuexian Xing ◽  
...  

AbstractElucidating transcription mediated by the glucocorticoid receptor (GR) is crucial for understanding the role of glucocorticoids (GCs) in the treatment of diseases. Podocyte is a useful model for studying GR regulation because GCs are the primary medication for podocytopathy. In this study, we integrated data from transcriptome, transcription factor binding, histone modification, and genome topology. Our data reveals that the GR binds and activates selective regulatory elements in podocyte. The 3D interactome captured by HiChIP facilitates the identification of remote targets of GR. We found that GR in podocyte is enriched at transcriptional interaction hubs and super-enhancers. We further demonstrate that the target gene of the top GR-associated super-enhancer is indispensable to the effective functioning of GC in podocyte. Our findings provided insights into the mechanisms underlying the protective effect of GCs on podocyte, and demonstrate the importance of considering transcriptional interactions in order to fine-map regulatory networks of GR.


Sign in / Sign up

Export Citation Format

Share Document