scholarly journals Elucidating the roles of Alzheimer disease-associated proteases and the signal-peptide peptidase-like 3 (SPPL3) in the shedding of glycosyltransferases

2018 ◽  
Author(s):  
Assou El-Battari ◽  
Sylvie Mathieu ◽  
Romain Sigaud ◽  
Maëlle Prorok-Hamon ◽  
L’Houcine Ouafik ◽  
...  

ABSTRACTThe Golgi resident glycosyltransferases (GTs) are membrane-bound glycoproteins but are frequently found as soluble proteins in biological fluids where their function remains largely unknown. Previous studies have established that the release of these proteins involved Alzheimer disease-associated proteases such as β-secretases (BACE1 and BACE2) and the intramembrane-cleaving aspartyl proteases Presenilins 1 and 2. Recent studies have involved another intramembrane-cleaving enzyme, the signal peptide peptidese-like-3 (SPPL3). Except for the latter, the two former studies mostly addressed particular cases of GTs, namely ST6Gal-I (BACEs) or GnT-V (Presenilins). Therefore the question still remains as which of these secretases is truly responsible for the cleavage and secretion of GTs. We herein combined the 3 proteases in a single study with respect to their abilities to release 3 families of GTs encompassing three N-acetylglucosaminyltransferases, two fucosyltransferases and two sialyltransferases. Green fluorescent protein (gfp)-fused versions of these GTs were virally transduced in mouse embryonic fibroblasts devoid of BACEs, Presenilins or SPPL3. We found that neither BACE nor Presenilins are involved in the shedding of these glycosyltransferases, while SPPL3 was involved in the cleavage and release of some but not all GTs. Notably, the γ- secretase inhibitor DFK-167 was the only molecule capable of significantly decreasing glycosyltransferase secretion, suggesting the involvement of γ-secretase(s), yet different from Presenilins but comprising SPPL3 among other proteases still to be identified. Using confocal microscopy, we show that SPPL3 selectivity towards GTs relays not only on sequence specificity but also depends on how GTs distribute in the cell with respect SPPL3 during their cycling within and outside the Golgi.

2018 ◽  
Vol 39 (1) ◽  
Author(s):  
Takuya Tomita ◽  
Shoshiro Hirayama ◽  
Yasuyuki Sakurai ◽  
Yuki Ohte ◽  
Hidehito Yoshihara ◽  
...  

ABSTRACT The proteasome is the proteolytic machinery at the center of regulated intracellular protein degradation and participates in various cellular processes. Maintaining the quality of the proteasome is therefore important for proper cell function. It is unclear, however, how proteasomes change over time and how aged proteasomes are disposed. Here, we show that the proteasome undergoes specific biochemical alterations as it ages. We generated Rpn11-Flag/enhanced green fluorescent protein (EGFP) tag-exchangeable knock-in mice and established a method for selective purification of old proteasomes in terms of their molecular age at the time after synthesis. The half-life of proteasomes in mouse embryonic fibroblasts isolated from these knock-in mice was about 16 h. Using this tool, we found increased association of Txnl1, Usp14, and actin with the proteasome and specific phosphorylation of Rpn3 at Ser 6 in 3-day-old proteasomes. We also identified CSNK2A2 encoding the catalytic α′ subunit of casein kinase II (CK2α′) as a responsible gene that regulates the phosphorylation and turnover of old proteasomes. These findings will provide a basis for understanding the mechanism of molecular aging of the proteasome.


Genes ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 434
Author(s):  
Alison Mbekeani ◽  
Will Stanley ◽  
Vishal Kalel ◽  
Noa Dahan ◽  
Einat Zalckvar ◽  
...  

Peroxisomes are central to eukaryotic metabolism, including the oxidation of fatty acids—which subsequently provide an important source of metabolic energy—and in the biosynthesis of cholesterol and plasmalogens. However, the presence and nature of peroxisomes in the parasitic apicomplexan protozoa remains controversial. A survey of the available genomes revealed that genes encoding peroxisome biogenesis factors, so-called peroxins (Pex), are only present in a subset of these parasites, the coccidia. The basic principle of peroxisomal protein import is evolutionarily conserved, proteins harbouring a peroxisomal-targeting signal 1 (PTS1) interact in the cytosol with the shuttling receptor Pex5 and are then imported into the peroxisome via the membrane-bound protein complex formed by Pex13 and Pex14. Surprisingly, whilst Pex5 is clearly identifiable, Pex13 and, perhaps, Pex14 are apparently absent from the coccidian genomes. To investigate the functionality of the PTS1 import mechanism in these parasites, expression of Pex5 from the model coccidian Toxoplasma gondii was shown to rescue the import defect of Pex5-deleted Saccharomyces cerevisiae. In support of these data, green fluorescent protein (GFP) bearing the enhanced (e)PTS1 known to efficiently localise to peroxisomes in yeast, localised to peroxisome-like bodies when expressed in Toxoplasma. Furthermore, the PTS1-binding domain of Pex5 and a PTS1 ligand from the putatively peroxisome-localised Toxoplasma sterol carrier protein (SCP2) were shown to interact in vitro. Taken together, these data demonstrate that the Pex5–PTS1 interaction is functional in the coccidia and indicate that a nonconventional peroxisomal import mechanism may operate in the absence of Pex13 and Pex14.


1998 ◽  
Vol 143 (6) ◽  
pp. 1547-1558 ◽  
Author(s):  
M. Carolina Tuma ◽  
Andrew Zill ◽  
Nathalie Le Bot ◽  
Isabelle Vernos ◽  
Vladimir Gelfand

Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles.


2011 ◽  
Vol 441 (1) ◽  
pp. 105-112 ◽  
Author(s):  
Gaëlle Tahay ◽  
Elsa Wiame ◽  
Donatienne Tyteca ◽  
Pierre J. Courtoy ◽  
Emile Van Schaftingen

Aspartate N-acetyltransferase (NAT8L, N-acetyltransferase 8-like), the enzyme that synthesizes N-acetylaspartate, is membrane-bound and is at least partially associated with the ER (endoplasmic reticulum). The aim of the present study was to determine which regions of the protein are important for its catalytic activity and its subcellular localization. Transfection of truncated forms of NAT8L into HEK (human embryonic kidney)-293T cells indicated that the 68 N-terminal residues (regions 1 and 2) have no importance for the catalytic activity and the subcellular localization of this enzyme, which was exclusively associated with the ER. Mutation of conserved residues that precede (Arg81 and Glu101, in region 3) or follow (Asp168 and Arg220, in region 5) the putative membrane region (region 4) markedly affected the kinetic properties, suggesting that regions 3 and 5 form the catalytic domain and that the membrane region has a loop structure. Evidence is provided for the membrane region comprising α-helices and the catalytic site being cytosolic. Transfection of chimaeric proteins in which GFP (green fluorescent protein) was fused to different regions of NAT8L indicated that the membrane region (region 4) is necessary and sufficient to target NAT8L to the ER. Thus NAT8L is targeted to the ER membrane by a hydrophobic loop that connects two regions of the catalytic domain.


2006 ◽  
Vol 72 (11) ◽  
pp. 7183-7192 ◽  
Author(s):  
Yoshimi Kikuchi ◽  
Masayo Date ◽  
Hiroshi Itaya ◽  
Kazuhiko Matsui ◽  
Long-Fei Wu

ABSTRACT Compared to those of other gram-positive bacteria, the genetic structure of the Corynebacterium glutamicum Tat system is unique in that it contains the tatE gene in addition to tatA, tatB, and tatC. The tatE homologue has been detected only in the genomes of gram-negative enterobacteria. To assess the function of the C. glutamicum Tat pathway, we cloned the tatA, tatB, tatC, and tatE genes from C. glutamicum ATCC 13869 and constructed mutants carrying deletions of each tat gene or of both the tatA and tatE genes. Using green fluorescent protein (GFP) fused with the twin-arginine signal peptide of the Escherichia coli TorA protein, we demonstrated that the minimal functional Tat system required TatA and TatC. TatA and TatE provide overlapping function. Unlike the TatB proteins from gram-negative bacteria, C. glutamicum TatB was dispensable for Tat function, although it was required for maximal efficiency of secretion. The signal peptide sequence of the isomaltodextranase (IMD) of Arthrobacter globiformis contains a twin-arginine motif. We showed that both IMD and GFP fused with the signal peptide of IMD were secreted via the C. glutamicum Tat pathway. These observations indicate that IMD is a bona fide Tat substrate and imply great potential of the C. glutamicum Tat system for industrial production of heterologous folded proteins.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245899
Author(s):  
Sho Takehana ◽  
Yuki Murata ◽  
Jun-ichiro Jo ◽  
Yasuhiko Tabata

The objective of this study is to prepare cationized gelatin-molecular beacon (MB) complexes for the visualization of intracellular messenger RNA (mRNA). The complexes were prepared from cationized gelatins with different extents of cationization and different mixing ratios of MB to cationized gelatin. The apparent size of complexes was almost similar, while the zeta potential was different among the complexes. Irrespective of the preparation conditions, the complexes had a sequence specificity against the target oligonucleotides in hybridization. The cytotoxicity and the amount of complexes internalized into cells increased with an increase in the cationization extent and the concentration of cationized gelatin. After the incubation with complexes prepared from cationized gelatin with the highest extent of cationization and at mixing ratios of 10 and 20 pmole MB/μg cationized gelatin, a high fluorescent intensity was detected. On the other hand, the complex prepared with the mixing ratio at 20 pmole/μg did not show any cytotoxicity. The complex was the most effective to visualize the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA endogenously present. In addition, even for enhanced green fluorescent protein (EGFP) mRNA exogenously transfected, the complex permitted to effectively detect it as well. It is concluded that both the endogenous and exogenous mRNA can be visualized in living cells by use of cationized gelatin-MB complexes designed.


2005 ◽  
Vol 71 (9) ◽  
pp. 5458-5464 ◽  
Author(s):  
Matthew J. Hundt ◽  
Carmel G. Ruffolo

ABSTRACT Pasteurella multocida is a highly infectious, facultative intracellular bacterium which causes fowl cholera in birds. This study reports, for the first time, the observed interaction between P. multocida and free-living amoebae. Amoebal trophozoites were coinfected with fowl-cholera-causing P. multocida strain X-73 that expressed the green fluorescent protein (GFP). Using confocal fluorescence microscopy, GFP expressing X-73 was located within the trophozoite. Transmission electron microscopy of coinfection preparations revealed clusters of intact X-73 cells in membrane-bound vacuoles within the trophozoite cytoplasm. A coinfection assay employing gentamicin to kill extracellular bacteria was used to assess the survival and replication of P. multocida within amoebae. In the presence of amoebae, the number of recoverable intracellular X-73 cells increased over a 24-h period; in contrast, X-73 cultured alone in assay medium showed a consistent decline in growth. Cytotoxicity assays and microscopy showed that X-73 was able to lyse and exit the amoebal cells approximately 18 h after coinfection. The observed interaction between P. multocida and amoebae can be considered as an infective process as the bacterium was able to invade, survive, replicate, and lyse the amoebal host. This raises the possibility that similar interactions occur in vivo between P. multocida and host cells. Free-living amoebae are ubiquitous within water and soil environments, and P. multocida has been observed to survive within these same ecosystems. Thus, our findings suggest that the interaction between P. multocida and amoebae may occur within the natural environment.


2020 ◽  
Vol 21 (11) ◽  
pp. 3799
Author(s):  
Irene C. Marcu ◽  
Naja Eberhard ◽  
Anaïs Yerly ◽  
Verena Balmer ◽  
Andrew Hemphill ◽  
...  

Small extracellular vesicles (EVs) are among the most frequently investigated EVs and play major roles in intercellular communication by delivering various cargo molecules to target cells. They could potentially represent an alternative delivery strategy to treat ocular toxoplasmosis, a parasitosis affecting the retinal pigment epithelium (RPE). To date, the uptake of human small EVs by RPE cells has never been reported. In this study, we report on the intracellular uptake of fluorescently labelled human urine and fibroblast-derived small EVs by human RPE cells. In summary, both dye-labelled urinary small EVs and small EVs obtained from fibroblasts stably expressing membrane-bound green fluorescent protein were successfully internalized by RPE cells as revealed by immunohistochemistry. In recipient ARPE19 cells, BODIPY-labelled small EVs were found in close vicinity to the parasite Toxoplasma gondii. Additionally, an ultrastructural method was enabled to distinguish between labelled exogenous and endogenous small EVs within target cells.


2005 ◽  
Vol 79 (18) ◽  
pp. 11901-11913 ◽  
Author(s):  
Christiane Fetzer ◽  
Birke Andrea Tews ◽  
Gregor Meyers

ABSTRACT The Erns protein is a structural glycoprotein of pestiviruses that lacks a typical membrane anchor sequence and is known to be secreted from the infected cell. However, major amounts of the protein are retained within the cell and attached to the virion by a so far unknown mechanism. Transient-expression studies with cDNA constructs showed that in a steady-state situation, 16% of the protein is found in the supernatant of the transfected cells while 84% appears as intracellular protein. We show here that Erns represents a membrane-bound protein. Membrane binding occurs via the carboxy-terminal region of Erns. By fusion of this sequence to the carboxy terminus of green fluorescent protein (GFP), the subcellular localization of the reporter protein switched from cytosolic to membrane bound. A core sequence of 11 amino acids necessary for membrane binding was elicited in truncation experiments with GFP constructs. However, this peptide is not sufficient to confer membrane anchoring but needs either upstream or downstream accessory sequences. Analyses with different extraction procedures showed that Erns is neither easily stripped from the membrane, like a peripheral membrane protein, nor as tightly membrane bound as a transmembrane protein.


Sign in / Sign up

Export Citation Format

Share Document