scholarly journals Myosin-driven fragmentation of actin filaments triggers contraction of a disordered actin network

2018 ◽  
Author(s):  
Kyohei Matsuda ◽  
Takuya Kobayashi ◽  
Mitsuhiro Sugawa ◽  
Yurika Koiso ◽  
Yoko Y. Toyoshima ◽  
...  

AbstractThe dynamic cytoskeletal network is responsible for cell shape changes and cell division. The actin-based motor protein myosin II drives the remodeling of a highly disordered actin-based network and enables the network to perform mechanical work such as contraction, migration and adhesion. Myosin II forms bipolar filaments that self-associate via their tail domains. Such myosin minifilaments generate both extensile and compressive forces that pull and push actin filaments, depending on the relative position of myosin and actin filaments in the network. However, it remains unclear how the mechanical properties of myosin II that rely on the energy of ATP hydrolysis spontaneously contract the disordered actin network. Here, we used a minimal in vitro reconstituted experimental system consisting of actin, myosin, and a cross-linking protein, to gain insights into the molecular mechanism by which myosin minifilaments organize disordered actin networks into contractile states. We found that contracted cluster size and time required for the onset of network contraction decreased as ATP concentration decreased. Contraction velocity was negatively correlated with ATP concentrations. Reduction of ATP concentration caused fragmentation of actin filaments by myosin minifilament. We also found that gelsolin, a Ca2+-regulated actin filament-severing protein, induced contraction of a mechanically stable network, implying that fragmentations of actin filaments in the network weaken the intra-network connectivity and trigger contraction. Our findings reveal that the disordered actin network contraction can be controlled by fragmentation of actin filaments, highlighting the molecular mechanism underlying the myosin motor-severing activities, other than the sliding tensile and compressive stress in the disordered actin network.

2010 ◽  
Vol 21 (6) ◽  
pp. 989-1000 ◽  
Author(s):  
Benjamin C. Stark ◽  
Thomas E. Sladewski ◽  
Luther W. Pollard ◽  
Matthew Lord

Myosin-II (Myo2p) and tropomyosin are essential for contractile ring formation and cytokinesis in fission yeast. Here we used a combination of in vivo and in vitro approaches to understand how these proteins function at contractile rings. We find that ring assembly is delayed in Myo2p motor and tropomyosin mutants, but occurs prematurely in cells engineered to express two copies of myo2. Thus, the timing of ring assembly responds to changes in Myo2p cellular levels and motor activity, and the emergence of tropomyosin-bound actin filaments. Doubling Myo2p levels suppresses defects in ring assembly associated with a tropomyosin mutant, suggesting a role for tropomyosin in maximizing Myo2p function. Correspondingly, tropomyosin increases Myo2p actin affinity and ATPase activity and promotes Myo2p-driven actin filament gliding in motility assays. Tropomyosin achieves this by favoring the strong actin-bound state of Myo2p. This mode of regulation reflects a role for tropomyosin in specifying and stabilizing actomyosin interactions, which facilitates contractile ring assembly in the fission yeast system.


1999 ◽  
Vol 76 (2) ◽  
pp. 985-992 ◽  
Author(s):  
Kohji Ito ◽  
Xiong Liu ◽  
Eisaku Katayama ◽  
Taro Q.P. Uyeda

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shashank Shekhar ◽  
Johnson Chung ◽  
Jane Kondev ◽  
Jeff Gelles ◽  
Bruce L. Goode

AbstractCellular actin networks can be rapidly disassembled and remodeled in a few seconds, yet in vitro actin filaments depolymerize slowly over minutes. The cellular mechanisms enabling actin to depolymerize this fast have so far remained obscure. Using microfluidics-assisted TIRF, we show that Cyclase-associated protein (CAP) and Cofilin synergize to processively depolymerize actin filament pointed ends at a rate 330-fold faster than spontaneous depolymerization. Single molecule imaging further reveals that hexameric CAP molecules interact with the pointed ends of Cofilin-decorated filaments for several seconds at a time, removing approximately 100 actin subunits per binding event. These findings establish a paradigm, in which a filament end-binding protein and a side-binding protein work in concert to control actin dynamics, and help explain how rapid actin network depolymerization is achieved in cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Johanna Funk ◽  
Felipe Merino ◽  
Matthias Schaks ◽  
Klemens Rottner ◽  
Stefan Raunser ◽  
...  

AbstractHeterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP’s C-terminal “tentacle” extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the β tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes—capping and nucleation—in branched actin network assembly.


2006 ◽  
Vol 175 (6) ◽  
pp. 947-955 ◽  
Author(s):  
Takushi Miyoshi ◽  
Takahiro Tsuji ◽  
Chiharu Higashida ◽  
Maud Hertzog ◽  
Akiko Fujita ◽  
...  

Actin forms the dendritic nucleation network and undergoes rapid polymerization-depolymerization cycles in lamellipodia. To elucidate the mechanism of actin disassembly, we characterized molecular kinetics of the major filament end-binding proteins Arp2/3 complex and capping protein (CP) using single-molecule speckle microscopy. We have determined the dissociation rates of Arp2/3 and CP as 0.048 and 0.58 s−1, respectively, in lamellipodia of live XTC fibroblasts. This CP dissociation rate is three orders of magnitude faster than in vitro. CP dissociates slower from actin stress fibers than from the lamellipodial actin network, suggesting that CP dissociation correlates with actin filament dynamics. We found that jasplakinolide, an actin depolymerization inhibitor, rapidly blocked the fast CP dissociation in cells. Consistently, the coexpression of LIM kinase prolonged CP speckle lifetime in lamellipodia. These results suggest that cofilin-mediated actin disassembly triggers CP dissociation from actin filaments. We predict that filament severing and end-to-end annealing might take place fairly frequently in the dendritic nucleation actin arrays.


2013 ◽  
Vol 200 (5) ◽  
pp. 619-633 ◽  
Author(s):  
Elena Ingerman ◽  
Jennifer Ying Hsiao ◽  
R. Dyche Mullins

We examined the role of ATP hydrolysis by the Arp2/3 complex in building the leading edge of a cell by studying the effects of hydrolysis defects on the behavior of the complex in the lamellipodial actin network of Drosophila S2 cells and in a reconstituted, in vitro, actin-based motility system. In S2 cells, nonhydrolyzing Arp2 and Arp3 subunits expanded and delayed disassembly of lamellipodial actin networks and the effect of mutant subunits was additive. Arp2 and Arp3 ATP hydrolysis mutants remained in lamellipodial networks longer and traveled greater distances from the plasma membrane, even in networks still containing wild-type Arp2/3 complex. In vitro, wild-type and ATP hydrolysis mutant Arp2/3 complexes each nucleated actin and built similar dendritic networks. However, networks constructed with Arp2/3 hydrolysis-defective mutants were more resistant to disassembly by cofilin. Our results indicate that ATP hydrolysis on both Arp2 and Arp3 contributes to dissociation of the complex from the actin network but is not strictly necessary for lamellipodial network disassembly.


2004 ◽  
Vol 167 (2) ◽  
pp. 315-325 ◽  
Author(s):  
Matthew Lord ◽  
Thomas D. Pollard

We purified native Myo2p/Cdc4p/Rlc1p (Myo2), the myosin-II motor required for cytokinesis by Schizosaccharomyces pombe. The Myo2p heavy chain associates with two light chains, Cdc4p and Rlc1p. Although crude Myo2 supported gliding motility of actin filaments in vitro, purified Myo2 lacked this activity in spite of retaining full Ca-ATPase activity and partial actin-activated Mg-ATPase activity. Unc45-/Cro1p-/She4p-related (UCS) protein Rng3p restored the full motility and actin-activated Mg-ATPase activity of purified Myo2. The COOH-terminal UCS domain of Rng3p alone restored motility to pure Myo2. Thus, Rng3p contributes directly to the motility activity of native Myo2. Consistent with a role in Myo2 activation, Rng3p colocalizes with Myo2p in the cytokinetic contractile ring. The absence of Rlc1p or mutations in the Myo2p head or Rng3p compromise the in vitro motility of Myo2 and explain the defects in cytokinesis associated with some of these mutations. In contrast, Myo2 with certain temperature-sensitive forms of Cdc4p has normal motility, so these mutations compromise other functions of Cdc4p required for cytokinesis.


2010 ◽  
Vol 21 (16) ◽  
pp. 2905-2915 ◽  
Author(s):  
Julien Berro ◽  
Vladimir Sirotkin ◽  
Thomas D. Pollard

We used the dendritic nucleation hypothesis to formulate a mathematical model of the assembly and disassembly of actin filaments at sites of clathrin-mediated endocytosis in fission yeast. We used the wave of active WASp recruitment at the site of the patch formation to drive assembly reactions after activation of Arp2/3 complex. Capping terminated actin filament elongation. Aging of the filaments by ATP hydrolysis and γ-phosphate dissociation allowed actin filament severing by cofilin. The model could simulate the assembly and disassembly of actin and other actin patch proteins using measured cytoplasmic concentrations of the proteins. However, to account quantitatively for the numbers of proteins measured over time in the accompanying article ( Sirotkin et al., 2010 , MBoC 21: 2894–2904), two reactions must be faster in cells than in vitro. Conditions inside the cell allow capping protein to bind to the barbed ends of actin filaments and Arp2/3 complex to bind to the sides of filaments faster than the purified proteins in vitro. Simulations also show that depolymerization from pointed ends cannot account for rapid loss of actin filaments from patches in 10 s. An alternative mechanism consistent with the data is that severing produces short fragments that diffuse away from the patch.


2014 ◽  
Vol 13 (5) ◽  
pp. 625-634 ◽  
Author(s):  
Paul Griffin ◽  
Ruth Furukawa ◽  
Cleveland Piggott ◽  
Andrew Maselli ◽  
Marcus Fechheimer

ABSTRACT Hirano bodies are paracrystalline F-actin-rich structures associated with diverse conditions, including neurodegeneration and aging. Generation of model Hirano bodies using altered forms of Dictyostelium 34-kDa actin-bundling protein allows studies of their physiological function and mechanism of formation. We describe a novel 34-kDa protein mutant, E60K, with a point mutation within the inhibitory domain of the 34-kDa protein. Expression of E60K in Dictyostelium induces the formation of model Hirano bodies. The E60K protein has activated actin binding and is calcium regulated, unlike other forms of the 34-kDa protein that induce Hirano bodies and that have activated actin binding but lack calcium regulation. Actin filaments in the presence of E60K in vitro show enhanced resistance to disassembly induced by latrunculin B. Actin filaments in model Hirano bodies are also protected from latrunculin-induced depolymerization. We used nocodazole and blebbistatin to probe the role of the microtubules and myosin II, respectively, in the formation of model Hirano bodies. In the presence of these inhibitors, model Hirano bodies can form but are smaller than controls at early times of formation. The ultrastructure of model Hirano bodies did not reveal any major difference in structure and organization in the presence of inhibitors. In summary, these results support the conclusion that formation of model Hirano bodies is promoted by gain-of-function actin filament bundling, which enhances actin filament stabilization. Microtubules and myosin II contribute to but are not required for formation of model Hirano bodies.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jenna R Christensen ◽  
Glen M Hocky ◽  
Kaitlin E Homa ◽  
Alisha N Morganthaler ◽  
Sarah E Hitchcock-DeGregori ◽  
...  

The fission yeast actin cytoskeleton is an ideal, simplified system to investigate fundamental mechanisms behind cellular self-organization. By focusing on the stabilizing protein tropomyosin Cdc8, bundling protein fimbrin Fim1, and severing protein coffin Adf1, we examined how their pairwise and collective interactions with actin filaments regulate their activity and segregation to functionally diverse F-actin networks. Utilizing multi-color TIRF microscopy of in vitro reconstituted F-actin networks, we observed and characterized two distinct Cdc8 cables loading and spreading cooperatively on individual actin filaments. Furthermore, Cdc8, Fim1, and Adf1 all compete for association with F-actin by different mechanisms, and their cooperative association with actin filaments affects their ability to compete. Finally, competition between Fim1 and Adf1 for F-actin synergizes their activities, promoting rapid displacement of Cdc8 from a dense F-actin network. Our findings reveal that competitive and cooperative interactions between actin binding proteins help define their associations with different F-actin networks.


Sign in / Sign up

Export Citation Format

Share Document