scholarly journals Chromosomal fusion and life history-associated genomic variation contribute to within-river local adaptation of Atlantic salmon

2018 ◽  
Author(s):  
Kyle Wellband ◽  
Claire Mérot ◽  
Tommi Linnansaari ◽  
J. A. K. Elliott ◽  
R. Allen Curry ◽  
...  

AbstractChromosomal inversions have been implicated in facilitating adaptation in the face of high levels of gene flow, but whether chromosomal fusions also have similar potential remains poorly understood. Atlantic salmon are usually characterized by population structure at multiple spatial scales; however, this is not the case for tributaries of the Miramichi River in North America. To resolve genetic relationships between populations in this system and the potential for known chromosomal fusions to contribute to adaptation we genotyped 728 juvenile salmon using a 50K SNP array. Consistent with previous work, we report extremely weak overall population structuring (Global FST = 0.004) and failed to support hierarchical structure between the river’s two main branches. We provide the first genomic characterization of a previously described polymorphic fusion between chromosomes 8 and 29. Fusion genomic characteristics included high LD, reduced heterozygosity in the fused homokaryotes, and strong divergence between the fused and the unfused rearrangement. Population structure based on fusion karyotype was five times stronger than neutral variation (FST = 0.019) and the frequency of the fusion was associated with summer precipitation supporting a hypothesis that this rearrangement may contribute local adaptation despite weak neutral differentiation. Additionally, both outlier variation among populations and a polygenic framework for characterizing adaptive variation in relation to climate identified a 250 Kb region of chromosome 9, including the gene six6 that has previously been linked to age-at-maturity and run-timing for this species. Overall our results indicate that adaptive processes, independent of major river branching, are more important than neutral processes for structuring these populations.

2018 ◽  
Author(s):  
Victoria L. Pritchard ◽  
Hannu Mäkinen ◽  
Juha-Pekka Vähä ◽  
Jaakko Erkinaro ◽  
Panu Orell ◽  
...  

ABSTRACTElucidating the genetic basis of adaptation to the local environment can improve our understanding of how the diversity of life has evolved. In this study we used a dense SNP array to identify candidate loci underlying fine-scale local adaptation within a large Atlantic salmon (Salmo salar) population. By combining outlier, gene-environment association, and haplotype homozygosity analyses, we identified multiple regions of the genome with strong evidence for diversifying selection. Several of these candidate regions had previously been identified in other studies, demonstrating that the same loci be adaptively important in Atlantic salmon at sub-drainage, regional and continental scales. Notably, we identified signals consistent with local selection around genes associated with variation in sexual maturation, energy homeostasis, behaviour, and immune defence. These included the large-effect age-at-matunty gene vgll3, the known obesity gene mc4r, and major histocompatibility complex II. Most strikingly, we confirmed a genomic region on Ssa09 that was extremely differentiated among subpopulations, and that is also a candidate for local selection over the global range of Atlantic salmon. This region co-localized with a genomic region strongly associated with spawning ecotype in sockeye salmon (Oncorhynchus nerka), with circumstantial evidence that the same gene (six6) may be the selective target in both cases. The phenotypic effect of this region in Atlantic salmon remains cryptic, although allelic variation is related to river flow volume and co-vanes with timing of the return spawning migration. Our results further inform management of Atlantic salmon and open multiple avenues for future research.


2019 ◽  
Vol 5 (2) ◽  
pp. eaav1112 ◽  
Author(s):  
Kenyon B. Mobley ◽  
Hanna Granroth-Wilding ◽  
Mikko Ellmen ◽  
Juha-Pekka Vähä ◽  
Tutku Aykanat ◽  
...  

A long-held, but poorly tested, assumption in natural populations is that individuals that disperse into new areas for reproduction are at a disadvantage compared to individuals that reproduce in their natal habitat, underpinning the eco-evolutionary processes of local adaptation and ecological speciation. Here, we capitalize on fine-scale population structure and natural dispersal events to compare the reproductive success of local and dispersing individuals captured on the same spawning ground in four consecutive parent-offspring cohorts of wild Atlantic salmon (Salmo salar). Parentage analysis conducted on adults and juvenile fish showed that local females and males had 9.6 and 2.9 times higher reproductive success than dispersers, respectively. Our results reveal how higher reproductive success in local spawners compared to dispersers may act in natural populations to drive population divergence and promote local adaptation over microgeographic spatial scales without clear morphological differences between populations.


2018 ◽  
Vol 28 (6) ◽  
pp. 1439-1459 ◽  
Author(s):  
Kyle Wellband ◽  
Claire Mérot ◽  
Tommi Linnansaari ◽  
J. A. K. Elliott ◽  
R. Allen Curry ◽  
...  

2020 ◽  
Author(s):  
Xavier Dallaire ◽  
Éric Normandeau ◽  
Julien Mainguy ◽  
Jean-Éric Tremblay ◽  
Louis Bernatchez ◽  
...  

AbstractDistinguishing neutral and adaptive genetic variation is one of the main challenges in investigating processes shaping population structure in the wild, and landscape genomics can help identify signatures of adaptation to contrasting environments. Arctic Char (Salvelinus alpinus) is an anadromous salmonid and the most harvested fish species by Inuit people, particularly so in Nunavik (Canada), one of the most recently deglaciated region in the world. Unlike most other anadromous salmonids, Arctic Char occupy coastal habitats near their overwintering rivers during their marine phase. The main objective of this study was to document the putative neutral and adaptive genomic variation of anadromous Arctic Char populations in Nunavik (Québec, Canada) and bordering regions. A second objective was to interpret our results in the context of fisheries management in Nunavik. We used genotyping-by-sequencing (GBS) to genotype 18,112 filtered single nucleotide polymorphisms (SNPs) for 650 individuals sampled in 23 locations (average sample size per location = 28) along >2,000 km of coastline. Our results reveal a hierarchical genetic structure, whereby neighboring hydrographic systems harbour distinct populations grouping within major oceanographic basins, namely the Hudson Bay, Hudson Strait, Ungava Bay and Labrador Sea. We found genetic diversity and differentiation to be consistent with both the expected post-glacial recolonization history and patterns of isolation-by-distance reflecting contemporary gene flow. Furthermore, using three gene-environment association (GEA) methods we found genomic evidence for local adaptation to freshwater and marine environmental components, especially in relation to sea-surface and air temperatures during summer, as well as salinity. Our results support fisheries management at a regional level, and other implications on hatchery projects and adaptation to climate change are discussed.


2018 ◽  
Author(s):  
Kenyon B. Mobley ◽  
Hanna Granroth-Wilding ◽  
Mikko Ellmen ◽  
Juha-Pekka Vähä ◽  
Tutku Aykanat ◽  
...  

AbstractA long-held, but poorly tested, assumption in natural populations is that individuals that disperse into new areas for reproduction are at a disadvantage compared to individuals that reproduce in their natal habitat, underpinning the eco-evolutionary processes of local adaptation and ecological speciation. Here, we capitalize on fine-scale population structure and natural dispersal events to compare the reproductive success of local and dispersing individuals captured on the same spawning ground in four consecutive parent-offspring cohorts of wild Atlantic salmon (Salmo salar). Parentage analysis conducted on adults and juvenile fish showed that local females and males had 9.6 and 2.9 times higher reproductive success than dispersers, respectively. Our results reveal how dispersal disadvantage in reproductive success may act in natural populations to drive population divergence and local adaptation over microgeographic spatial scales without clear morphological differences or physical barriers to gene flow.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoting Xia ◽  
Shunjin Zhang ◽  
Huaju Zhang ◽  
Zijing Zhang ◽  
Ningbo Chen ◽  
...  

Abstract Background Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. Results The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). Conclusion We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kelly B. Klingler ◽  
Joshua P. Jahner ◽  
Thomas L. Parchman ◽  
Chris Ray ◽  
Mary M. Peacock

Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.


2011 ◽  
Vol 96 (2-3) ◽  
pp. 111-119 ◽  
Author(s):  
Emiliano Lasagna ◽  
Matteo Bianchi ◽  
Simone Ceccobelli ◽  
Vincenzo Landi ◽  
Amparo Martínez Martínez ◽  
...  

1998 ◽  
Vol 55 (S1) ◽  
pp. 9-21 ◽  
Author(s):  
Carol L Folt ◽  
Keith H Nislow ◽  
Mary E Power

The Atlantic salmon (Salmo salar) is a model species for studying scale issues (i.e., the extent, duration, and resolution of a study or natural process) in ecology. Major shifts in behavior and habitat use over ontogeny, along with a relatively long life span and large dispersal and migration distances, make scale issues critical for effective conservation, management, and restoration of this species. The scale over which a process occurs must be linked to the research design and we illustrate this with a discussion of resource tracking by Atlantic salmon. Identifying scale inconsistencies (e.g., when a process is evident at one scale but not another) is shown to be an effective means by which some scale-dependent processes are understood. We review the literature to assess the temporal and spatial scales used in Atlantic salmon research and find most current studies appear to sacrifice spatial and temporal extent for increased resolution. Finally, we discuss research strategies for expanding the temporal and spatial scales in salmon research, such as conducting multiple scales studies to elucidate scale inconsistencies, identifying mechanisms, and using techniques and approaches to generalize across studies and over time and space.


Sign in / Sign up

Export Citation Format

Share Document