scholarly journals Cascading regime shifts within and across scales

2018 ◽  
Author(s):  
Juan C. Rocha ◽  
Garry Peterson ◽  
Örjan Bodin ◽  
Simon A. Levin

AbstractRegime shifts are large, abrupt and persistent critical transitions in the function and structure of systems (1, 2). Yet it is largely unknown how these transitions will interact, whether the occurrence of one will increase the likelihood of another, or simply correlate at distant places. Here we explore two types of cascading effects: domino effects create one-way dependencies, while hidden feedbacks produce two-way interactions; and compare them with the control case of driver sharing which can induce correlations. Using 30 regime shifts described as networks, we show that 45% of the pair-wise combinations of regime shifts present at least one plausible structural interdependence. Driver sharing is more common in aquatic systems, while hidden feedbacks are more commonly found in terrestrial and Earth systems tipping points. The likelihood of cascading effects depends on cross-scale interactions, but differs for each cascading effect type. Regime shifts should not be studied in isolation: instead, methods and data collection should account for potential teleconnections.

Science ◽  
2018 ◽  
Vol 362 (6421) ◽  
pp. 1379-1383 ◽  
Author(s):  
Juan C. Rocha ◽  
Garry Peterson ◽  
Örjan Bodin ◽  
Simon Levin

Regime shifts are large, abrupt, and persistent critical transitions in the function and structure of ecosystems. Yet, it is unknown how these transitions will interact, whether the occurrence of one will increase the likelihood of another or simply correlate at distant places. We explored two types of cascading effects: Domino effects create one-way dependencies, whereas hidden feedbacks produce two-way interactions. We compare them with the control case of driver sharing, which can induce correlations. Using 30 regime shifts described as networks, we show that 45% of regime shift pairwise combinations present at least one plausible structural interdependence. The likelihood of cascading effects depends on cross-scale interactions but differs for each type. Management of regime shifts should account for potential connections.


2015 ◽  
Vol 370 (1659) ◽  
pp. 20130263 ◽  
Author(s):  
Vasilis Dakos ◽  
Stephen R. Carpenter ◽  
Egbert H. van Nes ◽  
Marten Scheffer

In the vicinity of tipping points—or more precisely bifurcation points—ecosystems recover slowly from small perturbations. Such slowness may be interpreted as a sign of low resilience in the sense that the ecosystem could easily be tipped through a critical transition into a contrasting state. Indicators of this phenomenon of ‘critical slowing down (CSD)’ include a rise in temporal correlation and variance. Such indicators of CSD can provide an early warning signal of a nearby tipping point. Or, they may offer a possibility to rank reefs, lakes or other ecosystems according to their resilience. The fact that CSD may happen across a wide range of complex ecosystems close to tipping points implies a powerful generality. However, indicators of CSD are not manifested in all cases where regime shifts occur. This is because not all regime shifts are associated with tipping points. Here, we review the exploding literature about this issue to provide guidance on what to expect and what not to expect when it comes to the CSD-based early warning signals for critical transitions.


Author(s):  
Christian L. E. Franzke ◽  
Alessio Ciullo ◽  
Elisabeth A. Gilmore ◽  
Denise Margaret Matias ◽  
Nidhi Nagabhatla ◽  
...  

Abstract The Earth system and the human system are intrinsically linked. Anthropogenic greenhouse gas emissions have led to the climate crisis, which is causing unprecedented extreme events and could trigger Earth system tipping elements. Physical and social forces can lead to tipping points and cascading effects via feedbacks and telecoupling, but the current generation of climate-economy models do not generally take account of these interactions and feedbacks. Here, we show the importance of the interplay between human societies and Earth systems in creating tipping points and cascading effects and the way they in turn affect sustainability and security. The lack of modeling of these links can lead to an underestimation of climate and societal risks as well as how societal tipping points can be harnessed to moderate physical impacts. This calls for the systematic development of models for a better integration and understanding of Earth and human systems at different spatial and temporal scales, specifically those that enable decision-making to reduce the likelihood of crossing local or global tipping points.


2004 ◽  
Vol 49 (7) ◽  
pp. 73-83 ◽  
Author(s):  
M. Meybeck

Continental aquatic systems, particularly rivers, are exposed to major changes due to human pressures. Some changes are voluntary such as flow regulation and the fragmentation of river courses, both due to damming, or the water consumption particularly in dry regions, which results in a partial to complete dry-up of some rivers (neo-arheism). Other changes result from indirect impacts of other human activities, and include: sediment unbalance of river systems, chemical contamination, acidification, eutrophication, thermal unbalance, radioactive contamination, microbial contamination, and aquatic species introduction/invasion. These changes can be regarded as syndromes which have now reached a global amplitude, even in less populated regions, as the result of damning, mining and of long-range atmospheric pollution, thus defining a new era, the Anthropocene, where continental aquatic systems are no longer controlled by earth systems processes but by human activities. Each region of the globe has developed specific patterns of syndromes trajectories that can be reconstructed from historical analysis and through environmental archives. These trajectories reveal multiple types of human responses to aquatic environmental issues (e.g. water quality), usually lasting 10 to 50 years for the successful ones. The reactions of the earth system to such major changes of fluxes (water, energy, nutrients, carbon, pollutants) via the continental waterscape, the land-ocean interactions, the water bodies-atmosphere interactions, are likely to take place over a longer time scale (100-1,000 years) yet are poorly addressed by scientists and not considered in Integrated Water Management, particularly as concerns the coastal zone.


Author(s):  
Sarian Kosten ◽  
Annelies J. Veraart ◽  
Vasilis Dakos
Keyword(s):  

2020 ◽  
Vol 30 (5) ◽  
pp. 928-935 ◽  
Author(s):  
Jonathan E Suk ◽  
Eleanor C Vaughan ◽  
Robert G Cook ◽  
Jan C Semenza

Abstract Background Natural disasters are increasing in their frequency and complexity. Understanding how their cascading effects can lead to infectious disease outbreaks is important for developing cross-sectoral preparedness strategies. The review focussed on earthquakes and floods because of their importance in Europe and their potential to elucidate the pathways through which natural disasters can lead to infectious disease outbreaks. Methods A systematic literature review complemented by a call for evidence was conducted to identify earthquake or flooding events in Europe associated with potential infectious disease events. Results This review included 17 peer-reviewed papers that reported on suspected and confirmed infectious disease outbreaks following earthquakes (4 reports) or flooding (13 reports) in Europe. The majority of reports related to food- and water-borne disease. Eleven studies described the cascading effect of post-disaster outbreaks. The most reported driver of disease outbreaks was heavy rainfall, which led to cross-connections between water and other environmental systems, leading to the contamination of rivers, lakes, springs and water supplies. Exposure to contaminated surface water or floodwater following flooding, exposure to animal excreta and post-disaster living conditions were among other reported drivers of outbreaks. Conclusions The cascade effects of natural disasters, such as earthquakes and floods, include outbreaks of infectious disease. The projection that climate change-related extreme weather events will increase in Europe in the coming century highlights the importance of strengthening preparedness planning and measures to mitigate and control outbreaks in post-disaster settings.


2020 ◽  
Vol 17 (170) ◽  
pp. 20200482
Author(s):  
T. M. Bury ◽  
C. T. Bauch ◽  
M. Anand

Theory and observation tell us that many complex systems exhibit tipping points—thresholds involving an abrupt and irreversible transition to a contrasting dynamical regime. Such events are commonly referred to as critical transitions. Current research seeks to develop early warning signals (EWS) of critical transitions that could help prevent undesirable events such as ecosystem collapse. However, conventional EWS do not indicate the type of transition, since they are based on the generic phenomena of critical slowing down. For instance, they may fail to distinguish the onset of oscillations (e.g. Hopf bifurcation) from a transition to a distant attractor (e.g. Fold bifurcation). Moreover, conventional EWS are less reliable in systems with density-dependent noise. Other EWS based on the power spectrum (spectral EWS) have been proposed, but they rely upon spectral reddening, which does not occur prior to critical transitions with an oscillatory component. Here, we use Ornstein–Uhlenbeck theory to derive analytic approximations for EWS prior to each type of local bifurcation, thereby creating new spectral EWS that provide greater sensitivity to transition proximity; higher robustness to density-dependent noise and bifurcation type; and clues to the type of approaching transition. We demonstrate the advantage of applying these spectral EWS in concert with conventional EWS using a population model, and show that they provide a characteristic signal prior to two different Hopf bifurcations in data from a predator–prey chemostat experiment. The ability to better infer and differentiate the nature of upcoming transitions in complex systems will help humanity manage critical transitions in the Anthropocene Era.


Author(s):  
Hassan Alkhayuon ◽  
Rebecca C. Tyson ◽  
Sebastian Wieczorek

We identify the phase of a cycle as a new critical factor for tipping points (critical transitions) in cyclic systems subject to time-varying external conditions. As an example, we consider how contemporary climate variability induces tipping from a predator–prey cycle to extinction in two paradigmatic predator–prey models with an Allee effect. Our analysis of these examples uncovers a counterintuitive behaviour, which we call phase tipping or P-tipping , where tipping to extinction occurs only from certain phases of the cycle. To explain this behaviour, we combine global dynamics with set theory and introduce the concept of partial basin instability for attracting limit cycles. This concept provides a general framework to analyse and identify easily testable criteria for the occurrence of phase tipping in externally forced systems, and can be extended to more complicated attractors.


Sign in / Sign up

Export Citation Format

Share Document