scholarly journals Investigating the deregulation of metabolic tasks via Minimum Network Enrichment Analysis (MiNEA) as applied to nonalcoholic fatty liver disease using mouse and human omics data

2018 ◽  
Author(s):  
Vikash Pandey ◽  
Vassily Hatzimanikatis

AbstractNonalcoholic fatty liver disease (NAFLD) is associated with metabolic syndromes spanning a wide spectrum of diseases, from simple steatosis to the more complex nonalcoholic steatohepatitis. To identify the deregulation that occurs in metabolic processes at the molecular level that give rise to these various NAFLD phenotypes, algorithms such as pathway enrichment analysis (PEA) can be used. These analyses require the use of predefined pathway maps, which are composed of reactions describing metabolic processes/subsystems. Unfortunately, the annotation of the metabolic subsystems can differ depending on the pathway database used, making these approaches subject to biases associated with different pathway annotations, and these methods cannot capture the balancing of cofactors and byproducts through the complex nature and interactions of genome-scale metabolic networks (GEMs). Here, we introduce a framework entitled Minimum Network Enrichment Analysis (MiNEA) that is applied to GEMs to generate all possible alternative minimal networks (MiNs), which are possible and feasible networks composed of all the reactions pertaining to various metabolic subsystems that can synthesize a target metabolite. We applied MiNEA to investigate deregulated MiNs and to identify key regulators in different NAFLD phenotypes, such as a fatty liver and liver inflammation, in both humans and mice by integrating condition-specific transcriptomics data from liver samples. We identified key deregulations in the synthesis of cholesteryl esters, cholesterol, and hexadecanoate in both humans and mice, and we found that key regulators of the hydrogen peroxide synthesis network were regulated differently in humans and mice. We further identified which MiNs demonstrate the general and specific characteristics of the different NAFLD phenotypes. MiNEA is applicable to any GEM and to any desired target metabolite, making MiNEA flexible enough to study condition-specific metabolism for any given disease or organism.Author SummaryThis work aims to introduce a network-based enrichment analysis using metabolic networks and transcriptomics data. Previous pathways/subsystems enrichment methods use predefined gene annotations of metabolic processes and gene annotations can differ based on different resources and can produce bias in pathways definitions. Thus, we introduce a framework, Minimum Network Enrichment Analysis (MiNEA), which first finds all possible minimal-size networks for a given metabolic process/task and then identifies deregulated minimal networks using deregulated genes between two conditions. MiNEA also identifies the deregulation in key reactions that are overlapped across all possible minimal-size networks. We applied MiNEA to identify deregulated metabolic tasks and their synthesis networks in the steatosis and nonalcoholic steatohepatitis (NASH) disease using a metabolic network and transcriptomics data of mouse and human liver samples. We identified key regulators of NASH form the synthesis networks of hydrogen peroxide and ceramide in both humans and mice. We also identified opposite deregulation in NASH for the phosphatidylserine synthesis network between humans and mice. MiNEA finds synthesis networks for a given target metabolite and due to this it is flexible to study deregulation in different phenotypes. MiNEA can be widely applicable for studying context-specific metabolism for any organism because the metabolic networks and context-specific gene expression data are now available for many organisms.

Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 20
Author(s):  
Priyanka Baloni ◽  
Wikum Dinalankara ◽  
John C. Earls ◽  
Theo A. Knijnenburg ◽  
Donald Geman ◽  
...  

Cancer cells are adept at reprogramming energy metabolism, and the precise manifestation of this metabolic reprogramming exhibits heterogeneity across individuals (and from cell to cell). In this study, we analyzed the metabolic differences between interpersonal heterogeneous cancer phenotypes. We used divergence analysis on gene expression data of 1156 breast normal and tumor samples from The Cancer Genome Atlas (TCGA) and integrated this information with a genome-scale reconstruction of human metabolism to generate personalized, context-specific metabolic networks. Using this approach, we classified the samples into four distinct groups based on their metabolic profiles. Enrichment analysis of the subsystems indicated that amino acid metabolism, fatty acid oxidation, citric acid cycle, androgen and estrogen metabolism, and reactive oxygen species (ROS) detoxification distinguished these four groups. Additionally, we developed a workflow to identify potential drugs that can selectively target genes associated with the reactions of interest. MG-132 (a proteasome inhibitor) and OSU-03012 (a celecoxib derivative) were the top-ranking drugs identified from our analysis and known to have anti-tumor activity. Our approach has the potential to provide mechanistic insights into cancer-specific metabolic dependencies, ultimately enabling the identification of potential drug targets for each patient independently, contributing to a rational personalized medicine approach.


Author(s):  
Priyanka Baloni ◽  
Wikum Dinalankara ◽  
John C. Earls ◽  
Theo A. Knijnenburg ◽  
Donald Geman ◽  
...  

Cancer cells are adept at reprogramming energy metabolism and the precise manifestation of this metabolic reprogramming exhibits heterogeneity across individuals (and from cell to cell). In this study, we analyzed the metabolic differences between interpersonal heterogeneous cancer phenotypes. We used divergence analysis on gene expression data of 1156 breast normal and tumor samples from The Cancer Genome Atlas (TCGA) and integrated this information with a genome-scale reconstruction of human metabolism to generate personalized, context-specific metabolic networks. Using this approach, we classified the samples into four distinct groups based on their metabolic profiles. Enrichment analysis of the subsystems indicated that amino acid metabolism, fatty acid oxidation, citric acid cycle, androgen and estrogen metabolism and ROS detoxification distinguished these four groups. Additionally, we developed a workflow to identify potential drugs that can selectively target genes associated with the reactions of interest. MG-132 (a proteasome inhibitor) and OSU-03012 (a celecoxib derivative) were the top-ranking drugs identified from our analysis and known to have anti-tumor activity. Our approach has the potential to provide mechanistic insights into cancer-specific metabolic dependencies, ultimately enabling the identification of potential drug targets for each patient independently, contributing to a rational personalized medicine approach.


Metabolites ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 374
Author(s):  
Nanlin Zhu ◽  
Suling Huang ◽  
Qingli Zhang ◽  
Zhuohui Zhao ◽  
Hui Qu ◽  
...  

The pathophysiology of nonalcoholic fatty liver disease (NAFLD) is a complex process involving metabolic and inflammatory changes in livers and other organs, but the pathogenesis is still not well clarified. Two mouse models were established to study metabolic alteration of nonalcoholic fatty liver and nonalcoholic steatohepatitis, respectively. The concentrations of metabolites in serum, liver and intestine content were measured by the AbsoluteIDQ® p180 Kit (Biocrates Life Sciences, Innsbruck, Austria). Multivariate statistical methods, pathway analysis, enrichment analysis and correlation analysis were performed to analyze metabolomic data. The metabolic characteristics of liver, serum and intestine content could be distinctly distinguished from each group, indicating the occurrence of metabolic disturbance. Among them, metabolic alteration of liver and intestine content was more significant. Based on the metabolic data of liver, 19 differential metabolites were discovered between DIO and control, 12 between DIO-CCl4 and DIO, and 47 between DIO-CCl4 and normal. These metabolites were mainly associated with aminoacyl-tRNA biosynthesis, nitrogen metabolism, lipid metabolism, glyoxylate and dicarboxylate metabolism, and amino metabolism. Further study revealed that the intervention of obeticholic acid (OCA) could partly reverse the damage of CCl4. The correlation analysis of metabolite levels and clinical parameters showed that phosphatidylcholines were negatively associated with serum alanine aminotransferase, aspartate aminotransferase, NAFLD activity score, and fibrosis score, while lysophosphatidylcholines, sphingomyelins, amino acids, and acylcarnitines shared the reverse pattern. Our study investigated metabolic alteration among control, NAFLD model, and OCA treatment groups, providing preclinical information to understand the mechanism of NAFLD and amelioration of OCA.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Tong Lin ◽  
Li Li ◽  
Caijun Liang ◽  
Lisheng Peng

Nonalcoholic fatty liver disease (NAFLD) is a rising global public health concern due to its prevalence. Danning Tablets (DNt), a composite prescription of Chinese herbal medicine, shows significant curative effects on NAFLD in clinical application. This study aimed to decipher the bioactive substances and potential mechanisms of action of DNt in the treatment of NAFLD, applying an integrated network pharmacology approach. First, the bioactive compounds of DNt were screened based on their pharmacokinetic properties, and the corresponding drug targets were predicted. Then, the NAFLD-related targets were collected. The overlapping targets between the putative targets of DNt and NAFLD-related targets were identified as the potential therapeutic targets of DNt against NAFLD. Subsequently, the networks were constructed and analyzed, and the key bioactive compounds and targets were screened out depending on their importance in the networks. Functional enrichment analysis was carried out to elucidate the potential mechanisms of DNt acting on NAFLD. Finally, a molecular docking simulation was implemented to assess the potential binding affinity between the key targets and the bioactive compounds. As a result, 43 bioactive compounds of DNt and 69 putative targets were identified. Based on the network analysis, we found seven key bioactive compounds (quercetin, ß-sitosterol, luteolin, kaempferol, supraene, curcumenolactone C, and stigmasterol) of DNt might treat NAFLD via intervening IL6, MAPK8, VEGFA, CASP3, ALB, APP, MYC, PPARG, and RELA. The functional enrichment analysis revealed that DNt might affect NAFLD by modulating the signaling pathways involved in lipid metabolism, inflammation, oxidation, insulin resistance (IR), atherosclerosis, and apoptosis. Furthermore, most key bioactive compounds might bind firmly with the key targets. This study predicted the multicomponent, multitarget, and multipathway mechanisms of DNt in the treatment of NAFLD from a holistic perspective. DNt could be a promising agent for NAFLD, but further experimental verifications are still needed.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chao Cai ◽  
Da-Zhi Chen ◽  
Han-Xiao Tu ◽  
Wen-Kai Chen ◽  
Li-Chao Ge ◽  
...  

Nonalcoholic fatty liver disease is the most common hepatic disease in western countries and is even more ubiquitous in Asian countries. Our study determined that TH17/Treg cells were imbalanced in animal models. Based on our interest in the mechanism underlying TH17/Treg cell imbalance in nonalcoholic fatty liver mice, we conducted a joint bioinformatics analysis to further investigate this process. Common gene sequencing analysis was based on one trial from one sequencing platform, where gene expression analysis and enrichment analysis were the only analyses performed. We compared different sequencing results from different trials performed using different sequencing platforms, and we utilized the intersection of these analytical results to perform joint analysis. We used a bioinformatics analysis method to perform enrichment analysis and map interaction network analysis and predict potential microRNA sites. Animal experiments were also designed to validate the results of the data analysis based on quantitative polymerase chain reaction (qPCR) and western blotting. Our results revealed 8 coexisting differentially expressed genes (DEGs) and 7 hinge genes. The identified DEGs may influence nonalcoholic steatosis hepatitis through the interleukin-17 pathway. We found that microRNA-29c interacts with FOS and IGFBP1. Polymerase chain reaction analyses revealed both FOS and microRNA-29c expression in NASH mice, and western blot analyses indicated the same trend with regard to FOS protein levels. Based on these results, we suggest that microRNA-29c acts on FOS via the interleukin-17 signaling pathway to regulate TH17/Treg cells in NASH patients.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Ya Wang ◽  
Ming Niu ◽  
Ge-liu-chang Jia ◽  
Rui-sheng Li ◽  
Ya-ming Zhang ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic liver disease. Currently, there are no recognized medical therapies effective for NAFLD. Previous studies have demonstrated the effects of total turmeric extract on rats with NAFLD induced by high-fat diet. In this study, serum metabolomics was employed using UHPLC-Q-TOF-MS to elucidate the underlying mechanisms of HFD-induced NAFLD and the therapeutic effects of TE. Supervised orthogonal partial least-squares-discriminant analysis was used to discover differentiating metabolites, and pathway enrichment analysis suggested that TE had powerful combined effects of regulating lipid metabolism by affecting glycerophospholipid metabolism, glycerolipid metabolism, and steroid hormone biosynthesis signaling pathways. In addition, the significant changes in glycerophospholipid metabolism proteins also indicated that glycerophospholipid metabolism might be involved in the therapeutic effect of TE on NAFLD. Our findings not only supply systematic insight into the mechanisms of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.


Sign in / Sign up

Export Citation Format

Share Document