scholarly journals Automated leg tracking reveals distinct conserved gait and tremor signatures in Drosophila models of Parkinson’s Disease and Spinocerebellar ataxia 3

2018 ◽  
Author(s):  
Shuang Wu ◽  
Kah Junn Tan ◽  
Lakshmi Narasimhan Govindarajan ◽  
James Charles Stewart ◽  
Lin Gu ◽  
...  

SummaryGenetic models in Drosophila have made invaluable contributions to our understanding of the molecular mechanisms underlying neurodegeneration. In human patients, some neurodegenerative diseases lead to characteristic movement dysfunctions, such as abnormal gait and tremors. However, it is currently unknown whether similar movement defects occur in the respective fly models, which could be used to model and better understand the pathophysiology of movement disorders. To address this question, we developed a machine-learning image-analysis programme — Feature Learning-based LImb segmentation and Tracking (FLLIT) — that automatically tracks leg claw positions of freely moving flies recorded on high-speed video, generating a series of body and leg movement parameters. Of note, FLLIT requires no user input for learning. We used FLLIT to characterise fly models of Parkinson’s Disease (PD) and Spinocerebellar ataxia 3 (SCA3). Between these models, walking gait and tremor characteristics differed markedly, and recapitulated signatures of the respective human diseases. Selective expression of mutant SCA3 in dopaminergic neurons led to phenotypes resembling that of PD flies, suggesting that the behavioural phenotype may depend on the circuits affected, rather than the specific nature of the mutation. Different mutations produced tremors in distinct leg pairs, indicating that different motor circuits are affected. Almost 190,000 video frames were tracked in this study, allowing, for the first time, high-throughput analysis of gait and tremor features in Drosophila mutants. As an efficient assay of mutant gait and tremor features in an important model system, FLLIT will enable the analysis of the neurogenetic mechanisms that underlie movement disorders.

2020 ◽  
Vol 13 (10) ◽  
pp. dmm045815 ◽  
Author(s):  
Gideon L. Hughes ◽  
Michael A. Lones ◽  
Matthew Bedder ◽  
Peter D. Currie ◽  
Stephen L. Smith ◽  
...  

ABSTRACTAnimal models of human disease provide an in vivo system that can reveal molecular mechanisms by which mutations cause pathology, and, moreover, have the potential to provide a valuable tool for drug development. Here, we have developed a zebrafish model of Parkinson's disease (PD) together with a novel method to screen for movement disorders in adult fish, pioneering a more efficient drug-testing route. Mutation of the PARK7 gene (which encodes DJ-1) is known to cause monogenic autosomal recessive PD in humans, and, using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-function zebrafish with molecular hallmarks of PD. To establish whether there is a human-relevant parkinsonian phenotype in our model, we adapted proven tools used to diagnose PD in clinics and developed a novel and unbiased computational method to classify movement disorders in adult zebrafish. Using high-resolution video capture and machine learning, we extracted novel features of movement from continuous data streams and used an evolutionary algorithm to classify parkinsonian fish. This method will be widely applicable for assessing zebrafish models of human motor diseases and provide a valuable asset for the therapeutics pipeline. In addition, interrogation of RNA-seq data indicate metabolic reprogramming of brains in the absence of Dj-1, adding to growing evidence that disruption of bioenergetics is a key feature of neurodegeneration.This article has an associated First Person interview with the first author of the paper.


2016 ◽  
Vol 74 (4) ◽  
pp. 303-306 ◽  
Author(s):  
Hélio A. G. Teive ◽  
Adriana Moro ◽  
Mariana Moscovich ◽  
Renato P. Munhoz

ABSTRACT Increased of sexual arousal (ISA) has been described in different neurological diseases. The purpose of this study was present a case series of ISA in patients with movement disorders. Method Fifteen patients with different forms of movement disorders (Parkinson’s disease, Huntington’s disease, Tourette´s syndrome, spinocerebellar ataxia type 3), were evaluated in the Movement Disorders Unit of the Federal University of Paraná. Results Among Parkinson’s disease patients there were seven cases with different forms of ISA due to dopaminergic agonist use, levodopa abuse, and deep brain stimulation (DBS). In the group with hyperkinetic disorders, two patients with Huntington’s disease, two with Tourette’s syndrome, and four with spinocerebellar ataxia type 3 presented with ISA. Conclusions ISA in this group of patients had different etiologies, predominantly related to dopaminergic treatment or DBS in Parkinson’s disease, part of the background clinical picture in Huntington’s disease and Tourette’s syndrome, and probably associated with cultural aspects in patients with spinocerebellar ataxia type 3.


2019 ◽  
Vol 19 (7) ◽  
pp. 1022-1031 ◽  
Author(s):  
Paula D. Cebrián ◽  
Omar Cauli

Background: Many neurological disorders lead to institutionalization and can be accompanied in their advanced stages by functional impairment, and progressive loss of mobility, and cognitive alterations. Objective: We analyzed the relationship between functional impairment and cognitive performance and its related subdomains in individuals with Parkinson’s disease, Alzheimer’s disease accompanied by motor dysfunction, and with other neurological disorders characterized by both motor and cognitive problems. Methods: All participants lived in nursing homes (Valencia, Spain) and underwent cognitive evaluation with the Mini-Mental State Examination; functional assessment of independence in activities of daily living using the Barthel score and Katz index; and assessment of mobility with the elderly mobility scale. Results: The mean age of the subjects was 82.8 ± 0.6 years, 47% of the sample included individuals with Parkinson’s disease, and 48 % of the sample presented severe cognitive impairment. Direct significant relationships were found between the level of cognitive impairment and functional capacity (p < 0.01) and mobility (p < 0.05). Among the different domains, memory impairment was not associated with altered activities of daily living or mobility. The functional impairment and the risk of severe cognitive impairment were significantly (p<0.05) higher in female compared to male patients. Among comorbidities, overweight/obesity and diabetes were significantly (p < 0.05) associated with poor cognitive performance in those individuals with mild/moderate cognitive impairment. Conclusion: In institutionalized individuals with movement disorders there is an association between functional and cognitive impairment. Reduction of over-weight and proper control of diabetes may represent novel targets for improving cognitive function at such early stages.


2021 ◽  
Vol 22 (15) ◽  
pp. 8338
Author(s):  
Asad Jan ◽  
Nádia Pereira Gonçalves ◽  
Christian Bjerggaard Vaegter ◽  
Poul Henning Jensen ◽  
Nelson Ferreira

The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.


2021 ◽  
pp. 1-6
Author(s):  
Matt Landers ◽  
Suchi Saria ◽  
Alberto J. Espay

The use of artificial intelligence (AI) to help diagnose and manage disease is of increasing interest to researchers and clinicians. Volumes of health data are generated from smartphones and ubiquitous inexpensive sensors. By using these data, AI can offer otherwise unobtainable insights about disease burden and patient status in a free-living environment. Moreover, from clinical datasets AI can improve patient symptom monitoring and global epidemiologic efforts. While these applications are exciting, it is necessary to examine both the utility and limitations of these novel analytic methods. The most promising uses of AI remain aspirational. For example, defining the molecular subtypes of Parkinson’s disease will be assisted by future applications of AI to relevant datasets. This will allow clinicians to match patients to molecular therapies and will thus help launch precision medicine. Until AI proves its potential in pushing the frontier of precision medicine, its utility will primarily remain in individualized monitoring, complementing but not replacing movement disorders specialists.


Author(s):  
Rahel Feleke ◽  
Regina H. Reynolds ◽  
Amy M. Smith ◽  
Bension Tilley ◽  
Sarah A. Gagliano Taliun ◽  
...  

AbstractParkinson’s disease (PD), Parkinson’s disease with dementia (PDD) and dementia with Lewy bodies (DLB) are three clinically, genetically and neuropathologically overlapping neurodegenerative diseases collectively known as the Lewy body diseases (LBDs). A variety of molecular mechanisms have been implicated in PD pathogenesis, but the mechanisms underlying PDD and DLB remain largely unknown, a knowledge gap that presents an impediment to the discovery of disease-modifying therapies. Transcriptomic profiling can contribute to addressing this gap, but remains limited in the LBDs. Here, we applied paired bulk-tissue and single-nucleus RNA-sequencing to anterior cingulate cortex samples derived from 28 individuals, including healthy controls, PD, PDD and DLB cases (n = 7 per group), to transcriptomically profile the LBDs. Using this approach, we (i) found transcriptional alterations in multiple cell types across the LBDs; (ii) discovered evidence for widespread dysregulation of RNA splicing, particularly in PDD and DLB; (iii) identified potential splicing factors, with links to other dementia-related neurodegenerative diseases, coordinating this dysregulation; and (iv) identified transcriptomic commonalities and distinctions between the LBDs that inform understanding of the relationships between these three clinical disorders. Together, these findings have important implications for the design of RNA-targeted therapies for these diseases and highlight a potential molecular “window” of therapeutic opportunity between the initial onset of PD and subsequent development of Lewy body dementia.


2001 ◽  
Vol 49 (6) ◽  
pp. 821-821
Author(s):  
Ronald F. Pfeiffer

2015 ◽  
Vol 230 (7) ◽  
pp. 1614-1629 ◽  
Author(s):  
Hany E.S. Marei ◽  
Samah Lashen ◽  
Amany Farag ◽  
Asmaa Althani ◽  
Nahla Afifi ◽  
...  

1997 ◽  
Vol 2 (3) ◽  
pp. E13 ◽  
Author(s):  
Ronald F. Young ◽  
Anne Shumway-Cook ◽  
Sandra S. Vermeulen ◽  
Peter Grimm ◽  
John Blasko ◽  
...  

Fifty-five patients underwent radiosurgical placement of lesions either in the thalamus (27 patients) or globus pallidus (28 patients) for treatment of movement disorders. Patients were evaluated pre- and postoperatively by a team of observers skilled in the assessment of gait and movement disorders who were blinded to the procedure performed. They were not associated with the surgical team and concomitantly and blindly also assessed a group of 11 control patients with Parkinson's disease who did not undergo any surgical procedures. All stereotactic lesions were made with the Leksell gamma unit using the 4-mm secondary collimator helmet and a single isocenter with dose maximums from 120 to 160 Gy. Clinical follow-up evaluation indicated that 88% of patients who underwent thalamotomy became tremor free or nearly tremor free. Statistically significant improvements in performance were noted in the independent assessments of Unified Parkinson's Disease Rating Scale (UPDRS) scores in the patients undergoing thalamotomy. Eighty-five and seven-tenths percent of patients undergoing pallidotomy who had exhibited levodopa-induced dyskinesias had total or near-total relief of that symptom. Clinical assessment indicated improvement of bradykinesia and rigidity in 64.3% of patients who underwent pallidotomy. Independent blinded assessments did not reveal statistically significant improvements in Hoehn and Yahr scores or UPDRS scores. On the other hand, 64.7% of patients showed improvements in subscores of the UPDRS, including activities of daily living (58%), total contralateral score (58%), and contralateral motor scores (47%). Ipsilateral total UPDRS and ipsilateral motor scores were both improved in 59% of patients. One (1.8%) of 55 patients experienced a homonymous hemianopsia 9 months after pallidotomy due to an unexpectedly large lesion. No other complications of any kind were seen. Follow-up neuroimaging confirmed correct lesion location in all patients, with a mean maximum deviation from the planned target of 1 mm in the vertical axis. Measurements of lesions at regular interals on postoperative magnetic resonance images demonstrated considerable variability in lesion volumes. The safety and efficacy of functional lesions made with the gamma knife appear to be similar to those made with the assistance of electrophysiological guidance with open functional stereotactic procedures. Functional lesions may be made safely and accurately using gamma knife radiosurgical techniques. The efficacy is equivalent to that reported for open techniques that use radiofrequency lesioning methods with electrophysiological guidance. Complications are very infrequent with the radiosurgical method. The use of functional radiosurgical lesioning to treat movement disorders is particularly attractive in older patients and those with major systemic diseases or coagulopathies; its use in the general movement disorder population seems reasonable as well.


Sign in / Sign up

Export Citation Format

Share Document