scholarly journals PUMILIO hyperactivity drives premature aging of Norad-deficient mice

2018 ◽  
Author(s):  
Florian Kopp ◽  
Mehmet E. Yalvac ◽  
Beibei Chen ◽  
He Zhang ◽  
Sungyul Lee ◽  
...  

ABSTRACTAlthough numerous long noncoding RNAs (lncRNAs) have been identified, our understanding of their roles in mammalian physiology remains limited. Here we investigated the physiologic function of the conserved lncRNA Norad in vivo. Deletion of Norad in mice results in genomic instability and mitochondrial dysfunction, leading to a dramatic multi-system degenerative phenotype resembling premature aging. Loss of tissue homeostasis in Norad-deficient animals is attributable to augmented activity of PUMILIO proteins, which act as post-transcriptional repressors of target mRNAs to which they bind. Norad is the preferred RNA target of PUMILIO2 (PUM2) in mouse tissues and, upon loss of Norad, PUM2 hyperactively represses key genes required for mitosis and mitochondrial function. Remarkably, enforced Pum2 expression fully phenocopies Norad deletion, resulting in rapid-onset aging-associated phenotypes. These findings provide new insights and open new lines of investigation into the roles of noncoding RNAs and RNA binding proteins in normal physiology and aging.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Florian Kopp ◽  
Mahmoud M Elguindy ◽  
Mehmet E Yalvac ◽  
He Zhang ◽  
Beibei Chen ◽  
...  

Although numerous long noncoding RNAs (lncRNAs) have been identified, our understanding of their roles in mammalian physiology remains limited. Here, we investigated the physiologic function of the conserved lncRNA Norad in vivo. Deletion of Norad in mice results in genomic instability and mitochondrial dysfunction, leading to a dramatic multi-system degenerative phenotype resembling premature aging. Loss of tissue homeostasis in Norad-deficient animals is attributable to augmented activity of PUMILIO proteins, which act as post-transcriptional repressors of target mRNAs to which they bind. Norad is the preferred RNA target of PUMILIO2 (PUM2) in mouse tissues and, upon loss of Norad, PUM2 hyperactively represses key genes required for mitosis and mitochondrial function. Accordingly, enforced Pum2 expression fully phenocopies Norad deletion, resulting in rapid-onset aging-associated phenotypes. These findings provide new insights and open new lines of investigation into the roles of noncoding RNAs and RNA binding proteins in normal physiology and aging.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Kathrin Theil ◽  
Koshi Imami ◽  
Nikolaus Rajewsky

Abstract Understanding regulation of an mRNA requires knowledge of its regulators. However, methods for reliable de-novo identification of proteins binding to a particular RNA are scarce and were thus far only successfully applied to abundant noncoding RNAs in cell culture. Here, we present vIPR, an RNA-protein crosslink, RNA pulldown, and shotgun proteomics approach to identify proteins bound to selected mRNAs in C. elegans. Applying vIPR to the germline-specific transcript gld-1 led to enrichment of known and novel interactors. By comparing enrichment upon gld-1 and lin-41 pulldown, we demonstrate that vIPR recovers both common and specific RNA-binding proteins, and we validate DAZ-1 as a specific gld-1 regulator. Finally, combining vIPR with small RNA sequencing, we recover known and biologically important transcript-specific miRNA interactions, and we identify miR-84 as a specific interactor of the gld-1 transcript. We envision that vIPR will provide a platform for investigating RNA in vivo regulation in diverse biological systems.


2018 ◽  
Author(s):  
Inga Jarmoskaite ◽  
Sarah K. Denny ◽  
Pavanapuresan P. Vaidyanathan ◽  
Winston R. Becker ◽  
Johan O.L. Andreasson ◽  
...  

SummaryHigh-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA/RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.


2019 ◽  
Vol 14 (7) ◽  
pp. 621-627 ◽  
Author(s):  
Youhuang Bai ◽  
Xiaozhuan Dai ◽  
Tiantian Ye ◽  
Peijing Zhang ◽  
Xu Yan ◽  
...  

Background: Long noncoding RNAs (lncRNAs) are endogenous noncoding RNAs, arbitrarily longer than 200 nucleotides, that play critical roles in diverse biological processes. LncRNAs exist in different genomes ranging from animals to plants. Objective: PlncRNADB is a searchable database of lncRNA sequences and annotation in plants. Methods: We built a pipeline for lncRNA prediction in plants, providing a convenient utility for users to quickly distinguish potential noncoding RNAs from protein-coding transcripts. Results: More than five thousand lncRNAs are collected from four plant species (Arabidopsis thaliana, Arabidopsis lyrata, Populus trichocarpa and Zea mays) in PlncRNADB. Moreover, our database provides the relationship between lncRNAs and various RNA-binding proteins (RBPs), which can be displayed through a user-friendly web interface. Conclusion: PlncRNADB can serve as a reference database to investigate the lncRNAs and their interaction with RNA-binding proteins in plants. The PlncRNADB is freely available at http://bis.zju.edu.cn/PlncRNADB/.


2021 ◽  
Vol 4 (1) ◽  
pp. 22
Author(s):  
Mrinmoyee Majumder ◽  
Viswanathan Palanisamy

Control of gene expression is critical in shaping the pro-and eukaryotic organisms’ genotype and phenotype. The gene expression regulatory pathways solely rely on protein–protein and protein–nucleic acid interactions, which determine the fate of the nucleic acids. RNA–protein interactions play a significant role in co- and post-transcriptional regulation to control gene expression. RNA-binding proteins (RBPs) are a diverse group of macromolecules that bind to RNA and play an essential role in RNA biology by regulating pre-mRNA processing, maturation, nuclear transport, stability, and translation. Hence, the studies aimed at investigating RNA–protein interactions are essential to advance our knowledge in gene expression patterns associated with health and disease. Here we discuss the long-established and current technologies that are widely used to study RNA–protein interactions in vivo. We also present the advantages and disadvantages of each method discussed in the review.


2021 ◽  
Vol 7 (1) ◽  
pp. 11 ◽  
Author(s):  
André P. Gerber

RNA–protein interactions frame post-transcriptional regulatory networks and modulate transcription and epigenetics. While the technological advances in RNA sequencing have significantly expanded the repertoire of RNAs, recently developed biochemical approaches combined with sensitive mass-spectrometry have revealed hundreds of previously unrecognized and potentially novel RNA-binding proteins. Nevertheless, a major challenge remains to understand how the thousands of RNA molecules and their interacting proteins assemble and control the fate of each individual RNA in a cell. Here, I review recent methodological advances to approach this problem through systematic identification of proteins that interact with particular RNAs in living cells. Thereby, a specific focus is given to in vivo approaches that involve crosslinking of RNA–protein interactions through ultraviolet irradiation or treatment of cells with chemicals, followed by capture of the RNA under study with antisense-oligonucleotides and identification of bound proteins with mass-spectrometry. Several recent studies defining interactomes of long non-coding RNAs, viral RNAs, as well as mRNAs are highlighted, and short reference is given to recent in-cell protein labeling techniques. These recent experimental improvements could open the door for broader applications and to study the remodeling of RNA–protein complexes upon different environmental cues and in disease.


Author(s):  
Jiaying Zhu ◽  
Changhao Li ◽  
Xu Peng ◽  
Xiuren Zhang

Abstract The majority of the genome is transcribed to RNA in living organisms. RNA transcripts can form astonishing arrays of secondary and tertiary structures via Watson-Crick, Hoogsteen or wobble base pairing. In vivo, RNA folding is not a simple thermodynamics event of minimizing free energy. Instead, the process is constrained by transcription, RNA binding proteins (RBPs), steric factors and micro-environment. RNA secondary structure (RSS) plays myriad roles in numerous biological processes, such as RNA processing, stability, transportation and translation in prokaryotes and eukaryotes. Emerging evidence has also implicated RSS in RNA trafficking, liquid-liquid phase separation and plant responses to environmental variations such as temperature and salinity. At the molecular level, RSS is correlated with regulating splicing, polyadenylation, protein systhsis, and miRNA biogenesis and functions. In this review, we summarized newly reported methods for probing RSS in vivo and functions and mechanisms of RSS in plant physiology.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haiyan Shen ◽  
Guomin Luo ◽  
Qingjuan Chen

AbstractApproximately 338,000 patients are diagnosed with kidney cancer worldwide each year, and renal cell carcinoma (RCC), which is derived from renal epithelium, accounts for more than ninety percent of the malignancy. Next generation RNA sequencing has enabled the identification of novel long noncoding RNAs (lncRNAs) in the past 10 years. Recent studies have provided extensive evidence that lncRNAs bind to chromatin modification proteins, transcription factors, RNA-binding proteins and microRNAs, and thereby modulate gene expression through regulating chromatin status, gene transcription, pre-mRNA splicing, mRNA decay and stability, protein translation and stability. In vitro and in vivo studies have demonstrated that over-expression of oncogenic lncRNAs and silencing of tumor suppressive lncRNAs are a common feature of human RCC, and that aberrant lncRNA expression is a marker for poor patient prognosis, and is essential for the initiation and progression of RCC. Because lncRNAs, compared with mRNAs, are expressed in a tissue-specific manner, aberrantly expressed lncRNAs can be better targeted for the treatment of RCC through screening small molecule compounds which block the interaction between lncRNAs and their binding proteins or microRNAs.


Sign in / Sign up

Export Citation Format

Share Document