scholarly journals Title: In vivo phosphatidylserine variations steer Rho GTPase signaling in a cell-context dependent manner

2018 ◽  
Author(s):  
Matthieu Pierre Platre ◽  
Vincent Bayle ◽  
Laia Armengot ◽  
Joseph Bareille ◽  
Maria Mar Marques-Bueno ◽  
...  

AbstractRho GTPases are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. Here, we show that the phospholipid phosphatidylserine acts as a developmentally-controlled lipid rheostat that tunes Rho GTPase signaling in Arabidopsis. Live super-resolution single molecule imaging revealed that RHO-OF-PLANT6 (ROP6) is stabilized by phosphatidylserine into plasma membrane (PM) nanodomains, which is required for auxin signaling. Furthermore, we uncovered that the PM phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism. Our work reveals that variations in phosphatidylserine levels are a physiological process that may be leveraged to regulate small GTPase signaling during development.One Sentence SummaryPhosphatidylserine acts as a developmentally-controlled lipid rheostat that regulates cellular auxin sensitivity and plant development.

Science ◽  
2019 ◽  
Vol 364 (6435) ◽  
pp. 57-62 ◽  
Author(s):  
Matthieu Pierre Platre ◽  
Vincent Bayle ◽  
Laia Armengot ◽  
Joseph Bareille ◽  
Maria del Mar Marquès-Bueno ◽  
...  

Rho guanosine triphosphatases (GTPases) are master regulators of cell signaling, but how they are regulated depending on the cellular context is unclear. We found that the phospholipid phosphatidylserine acts as a developmentally controlled lipid rheostat that tunes Rho GTPase signaling in Arabidopsis. Live superresolution single-molecule imaging revealed that the protein Rho of Plants 6 (ROP6) is stabilized by phosphatidylserine into plasma membrane nanodomains, which are required for auxin signaling. Our experiments also revealed that the plasma membrane phosphatidylserine content varies during plant root development and that the level of phosphatidylserine modulates the quantity of ROP6 nanoclusters induced by auxin and hence downstream signaling, including regulation of endocytosis and gravitropism. Our work shows that variations in phosphatidylserine levels are a physiological process that may be leveraged to regulate small GTPase signaling during development.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Anh T Ngo ◽  
Marisa L Thierheimer ◽  
Özgün Babur ◽  
Anne D Rocheleau ◽  
Xiaolin Nan ◽  
...  

Introduction: Upon activation, platelets undergo specific morphological alterations critical to hemostatic plug and thrombus formation via actin cytoskeletal reorganizations driven by the Rho GTPases Rac1, Cdc42 and RhoA. Here we investigate roles for Rho-specific guanine nucleotide dissociation inhibitor proteins (RhoGDIs) in regulating platelet function. Methods and Hypothesis: Through an approach combining pharmacology, cell biology and systems biology methods we assessed the hypothesis that RhoGDI proteins regulate Rho GTPase-driven platelet functions downstream of platelet integrin and glycoprotein receptors. Results: We find that platelets express two RhoGDI family members, RhoGDI and Ly-GDI. Antibody interference and platelet spreading experiments suggest a specific role for Ly-GDI in platelet function. Intracellular staining and super resolution microscopy assays find that Ly-GDI displays an asymmetric, polarized localization that largely overlaps with Rac1 and Cdc42 as well as microtubules and protein kinase C (PKC) in platelets adherent to fibrinogen. Signaling studies based on interactome and pathways analyses also support a regulatory role for Ly-GDI in platelets, as Ly-GDI is phosphorylated at PKC substrate motifs in a PKC-dependent manner in response to the platelet collagen receptor glycoprotein (GP)VI-specific agonist collagen-related peptide. Notably, inhibition of PKC diffuses the polarized organization of Ly-GDI in spread platelets relative to its colocalization with Rac1 and Cdc42. Conclusion: In conclusion, our results support roles for Ly-GDI as a localized regulator of Rho GTPases in platelets and link PKC and Rho GTPase signaling systems to platelet function.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 631-631
Author(s):  
Marie-Dominique Filippi ◽  
Pierre-Yves Berclaz ◽  
Kathleen Szczur ◽  
Chad Harris ◽  
David A. Williams

Abstract Neutrophils are a critical cell in inflammatory processes by moving rapidly to tissue sites of inflammation to perform phagocytosis, cytokine and reactive oxygen species release. Members of the small Rho GTPase family, Rac1, Rac2, CDC42 and RhoA, are central regulators of cell movement via cytoskeleton rearrangement. We have previously demonstrated that the Rho family GTPase Rac2 is a critical regulator of neutrophil functions in vitro and in vivo (Roberts et al, Immunity 1999). We have also demonstrated that in response to formyl-methionyl-leucyl-phenylalanine (fMLP), the related GTPase Rac1 plays a distinct, but as yet ill-defined role in tail retraction during cell movement and cell spreading in vitro (Gu and Filippi et al, Science 2003). Here, we further demonstrate that Rac1 appears to be critical for β2-integrin mediated adhesion and migration likely via cross talk with another Rho GTPase, RhoA. Although, Rac1−/− PMNs show normal in vitro migration in response to fMLP using the Boyden chamber assay, Rac1−/− PMNs demonstrate a dramatic defect compared with WT cells in haptotaxis using transwell precoated with fibrinogen (1.3±0.3x103 vs 9.8±0.5x103). In addition, Rac1−/− PMNs displayed increased frequency in pseudopodia formation associated with lack of cell body contraction upon integrin ligation compared with WT (80% vs 40%). We noted that this phenotype closely mimics deregulation of the related Rho GTPase, RhoA. Remarkably, Rac1-deficiency leads to mislocalization of RhoA in neutrophils after integrin ligation and reintroduction of Rac1 into Rac1−/− cells completely restores the correct localization of RhoA. These data are consistent with the hypothesis that Rho GTPases interact in a time- and space-dependent manner. Because fMLP-induced PMN migration into the lung has previously been shown to be beta2-integrin dependent (Mackarel, Am. J. Respir. Cell. Mol. Biol 2000), we used a model of neutrophil associated lung inflammation induced by intratracheal (IT) injection of fMLP to address the physiological role of Rac1 in neutrophil-derived inflammatory processes in vivo,. To study the role of Rac1 specifically in bone marrow-derived cells, we reconstituted C57BL/6 mice with either wild type or Rac1Flox/Flox bone marrow cells. After Cre-mediated deletion of Rac1, reconstituted mice were treated with one dose of fMLP (20mg) IT. One day after fMLP exposure, bronchoalveolar lavage (BAL) from reconstituted animals showed complete loss of Rac1 expression and demonstrated significantly reduced numbers of migrated neutrophils in BAL compared with mice reconstituted with WT cells (3.1±0.65 vs 9.56±2, p<0.05). Importantly, 5 weeks after fMLP exposure IT, Rac1−/− recipients displayed a significant reduction in emphysematous lesions as compared with WT as assessed by morphometric measurement of alveolar spaces (57.6±7.8 vs 73.3±3.04, p<0.05), demonstrating the physiological relevance of Rac1 in neutrophil-related inflammatory responses in vivo. Taken together, these results suggest that Rac1 activity regulates b2 integrin-induced cell shape change and RhoA subcellular localization in PMNs and demonstrate the existence of physiological cross talk between Rac1 and RhoA where RhoA activity depends at least in part on Rac1. Thus, Rac1 and RhoA appear to coordinately regulate PMN migration into the lung during inflammation.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1990
Author(s):  
Inmaculada Navarro-Lérida ◽  
Miguel Sánchez-Álvarez ◽  
Miguel Ángel del Pozo

Cells and tissues are continuously exposed to both chemical and physical stimuli and dynamically adapt and respond to this variety of external cues to ensure cellular homeostasis, regulated development and tissue-specific differentiation. Alterations of these pathways promote disease progression—a prominent example being cancer. Rho GTPases are key regulators of the remodeling of cytoskeleton and cell membranes and their coordination and integration with different biological processes, including cell polarization and motility, as well as other signaling networks such as growth signaling and proliferation. Apart from the control of GTP–GDP cycling, Rho GTPase activity is spatially and temporally regulated by post-translation modifications (PTMs) and their assembly onto specific protein complexes, which determine their controlled activity at distinct cellular compartments. Although Rho GTPases were traditionally conceived as targeted from the cytosol to the plasma membrane to exert their activity, recent research demonstrates that active pools of different Rho GTPases also localize to endomembranes and the nucleus. In this review, we discuss how PTM-driven modulation of Rho GTPases provides a versatile mechanism for their compartmentalization and functional regulation. Understanding how the subcellular sorting of active small GTPase pools occurs and what its functional significance is could reveal novel therapeutic opportunities.


2019 ◽  
Vol 30 (1) ◽  
pp. 69-81 ◽  
Author(s):  
Tsai-Shin Chiang ◽  
Ming-Chieh Lin ◽  
Meng-Chen Tsai ◽  
Chieh-Hsin Chen ◽  
Li-Ting Jang ◽  
...  

Cell migration is a highly regulated event that is initiated by cell membrane protrusion and actin reorganization. Robo1, a single-pass transmembrane receptor, is crucial for neuronal guidance and cell migration. ADP-ribosylation factor (Arf)–like 4A (Arl4A), an Arf small GTPase, functions in cell morphology, cell migration, and actin cytoskeleton remodeling; however, the molecular mechanisms of Arl4A in cell migration are unclear. Here, we report that the binding of Arl4A to Robo1 modulates cell migration by promoting Cdc42 activation. We found that Arl4A interacts with Robo1 in a GTP-dependent manner and that the Robo1 amino acid residues 1394–1398 are required for this interaction. The Arl4A-Robo1 interaction is essential for Arl4A-induced cell migration and Cdc42 activation but not for the plasma membrane localization of Robo1. In addition, we show that the binding of Arl4A to Robo1 decreases the association of Robo1 with the Cdc42 GTPase-activating protein srGAP1. Furthermore, Slit2/Robo1 binding down-regulates the Arl4A-Robo1 interaction in vivo, thus attenuating Cdc42-mediated cell migration. Therefore, our study reveals a novel mechanism by which Arl4A participates in Slit2/Robo1 signaling to modulate cell motility by regulating Cdc42 activity.


2019 ◽  
Vol 218 (10) ◽  
pp. 3397-3414 ◽  
Author(s):  
Jordan T. Silver ◽  
Frederik Wirtz-Peitz ◽  
Sérgio Simões ◽  
Milena Pellikka ◽  
Dong Yan ◽  
...  

The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.


2006 ◽  
Vol 5 (10) ◽  
pp. 1648-1663 ◽  
Author(s):  
Baggavalli P. Somesh ◽  
Georgia Vlahou ◽  
Miho Iijima ◽  
Robert H. Insall ◽  
Peter Devreotes ◽  
...  

ABSTRACTRacG is an unusual member of the complex family of Rho GTPases inDictyostelium. We have generated a knockout (KO) strain, as well as strains that overexpress wild-type (WT), constitutively active (V12), or dominant negative (N17) RacG. The protein is targeted to the plasma membrane, apparently in a nucleotide-dependent manner, and induces the formation of abundant actin-driven filopods. RacG is enriched at the rim of the progressing phagocytic cup, and overexpression of RacG-WT or RacG-V12 induced an increased rate of particle uptake. The positive effect of RacG on phagocytosis was abolished in the presence of 50 μM LY294002, a phosphoinositide 3-kinase inhibitor, indicating that generation of phosphatidylinositol 3,4,5-trisphosphate is required for activation of RacG. RacG-KO cells showed a moderate chemotaxis defect that was stronger in the RacG-V12 and RacG-N17 mutants, in part because of interference with signaling through Rac1. The in vivo effects of RacG-V12 could not be reproduced by a mutant lacking the Rho insert region, indicating that this region is essential for interaction with downstream components. Processes like growth, pinocytosis, exocytosis, cytokinesis, and development were unaffected in Rac-KO cells and in the overexpressor mutants. In a cell-free system, RacG induced actin polymerization upon GTPγS stimulation, and this response could be blocked by an Arp3 antibody. While the mild phenotype of RacG-KO cells indicates some overlap with one or moreDictyosteliumRho GTPases, like Rac1 and RacB, the significant changes found in overexpressors show that RacG plays important roles. We hypothesize that RacG interacts with a subset of effectors, in particular those concerned with shape, motility, and phagocytosis.


2006 ◽  
Vol 172 (5) ◽  
pp. 759-769 ◽  
Author(s):  
Jean Paul ten Klooster ◽  
Zahara M. Jaffer ◽  
Jonathan Chernoff ◽  
Peter L. Hordijk

Rho guanosine triphosphatases (GTPases) are critical regulators of cytoskeletal dynamics and control complex functions such as cell adhesion, spreading, migration, and cell division. It is generally accepted that localized GTPase activation is required for the proper initiation of downstream signaling events, although the molecular mechanisms that control targeting of Rho GTPases are unknown. In this study, we show that the Rho GTPase Rac1, via a proline stretch in its COOH terminus, binds directly to the SH3 domain of the Cdc42/Rac activator β-Pix (p21-activated kinase [Pak]–interacting exchange factor). The interaction with β-Pix is nucleotide independent and is necessary and sufficient for Rac1 recruitment to membrane ruffles and to focal adhesions. In addition, the Rac1–β-Pix interaction is required for Rac1 activation by β-Pix as well as for Rac1-mediated spreading. Finally, using cells deficient for the β-Pix–binding kinase Pak1, we show that Pak1 regulates the Rac1–β-Pix interaction and controls cell spreading and adhesion-induced Rac1 activation. These data provide a model for the intracellular targeting and localized activation of Rac1 through its exchange factor β-Pix.


2006 ◽  
Vol 26 (23) ◽  
pp. 9016-9034 ◽  
Author(s):  
Zhiyong Ma ◽  
Masayuki Kanai ◽  
Kenji Kawamura ◽  
Kozo Kaibuchi ◽  
Keqiang Ye ◽  
...  

ABSTRACT Nucleophosmin (NPM)/B23 has been implicated in the regulation of centrosome duplication. NPM/B23 localizes between two centrioles in the unduplicated centrosome. Upon phosphorylation on Thr199 by cyclin-dependent kinase 2 (CDK2)/cyclin E, the majority of centrosomal NPM/B23 dissociates from centrosomes, but some NPM/B23 phosphorylated on Thr199 remains at centrosomes. It has been shown that Thr199 phosphorylation of NPM/B23 is critical for the physical separation of the paired centrioles, an initial event of the centrosome duplication process. Here, we identified ROCK II kinase, an effector of Rho small GTPase, as a protein that localizes to centrosomes and physically interacts with NPM/B23. Expression of the constitutively active form of ROCK II promotes centrosome duplication, while down-regulation of ROCK II expression results in the suppression of centrosome duplication, especially delaying the initiation of centrosome duplication during the cell cycle. Moreover, ROCK II regulates centrosome duplication in its kinase and centrosome localization activity-dependent manner. We further found that ROCK II kinase activity is significantly enhanced by binding to NPM/B23 and that NPM/B23 acquires a higher binding affinity to ROCK II upon phosphorylation on Thr199. Moreover, physical interaction between ROCK II and NPM/B23 in vivo occurs in association with CDK2/cyclin E activation and the emergence of Thr199-phosphorylated NPM/B23. All these findings point to ROCK II as the effector of the CDK2/cyclin E-NPM/B23 pathway in the regulation of centrosome duplication.


2003 ◽  
Vol 23 (6) ◽  
pp. 2151-2161 ◽  
Author(s):  
Jeffrey M. Masuda-Robens ◽  
Sara N. Kutney ◽  
Hongwei Qi ◽  
Margaret M. Chou

ABSTRACT The Rho family GTPases Cdc42 and Rac1 play fundamental roles in transformation and actin remodeling. Here, we demonstrate that the TRE17 oncogene encodes a component of a novel effector pathway for these GTPases. TRE17 coprecipitated specifically with the active forms of Cdc42 and Rac1 in vivo. Furthermore, the subcellular localization of TRE17 was dramatically regulated by these GTPases and mitogens. Under serum-starved conditions, TRE17 localized predominantly to filamentous structures within the cell. Epidermal growth factor (EGF) induced relocalization of TRE17 to the plasma membrane in a Cdc42-/Rac1-dependent manner. Coexpression of activated alleles of Cdc42 or Rac1 also caused complete redistribution of TRE17 to the plasma membrane, where it partially colocalized with the GTPases in filopodia and ruffles, respectively. Membrane recruitment of TRE17 by EGF or the GTPases was dependent on actin polymerization. Finally, we found that a C-terminal truncation mutant of TRE17 induced the accumulation of cortical actin, mimicking the effects of activated Cdc42. Together, these results identify TRE17 as part of a novel effector complex for Cdc42 and Rac1, potentially contributing to their effects on actin remodeling. The present study provides insights into the regulation and cellular function of this previously uncharacterized oncogene.


Sign in / Sign up

Export Citation Format

Share Document