scholarly journals Prediction and control of symmetry breaking in embryoid bodies by environment and signal integration

2018 ◽  
Author(s):  
Naor Sagy ◽  
Shaked Slovin ◽  
Maya Allalouf ◽  
Maayan Pour ◽  
Gaya Savyon ◽  
...  

AbstractDuring early embryogenesis, mechanical signals, localized biochemical signals and neighboring cell layers interaction coordinate around anteroposterior axis determination and symmetry breaking. Deciphering their relative roles, which are hard to tease apart in vivo, will enhance our understanding of how these processes are driven. In recent years, in vitro 3D models of early mammalian development, such as embryoid bodies (EBs) and gastruloids, were successful in mimicking various aspects of the early embryo, providing high throughput accessible systems for studying the basic rules shaping cell fate and morphology during embryogenesis. Using Brachyury (Bry), a primitive streak and mesendoderm marker in EBs, we study how contact, biochemical and neighboring cell cues affect the positioning of a primitive streak-like locus, determining the AP axis. We show that a Bry-competent layer must be formed in the EB before Bry expression initiates, and that Bry onset locus selection depends on contact points of the EB with its surrounding. We can maneuver Bry onset to occur at a specific locus, a few loci, or in an isotropic peripheral pattern. By spatially separating contact and biochemical signal sources, we show these two modalities can be integrated by the EB to generate a single Bry locus. Finally, we show Foxa2+ cells are predictive of the future location of Bry onset, demonstrating an earlier symmetry-breaking event. By delineating the temporal signaling pathway dependencies of Bry and Foxa2, we were able to selectively abolish either, or spatially decouple the two cell types during EB differentiation. These findings demonstrate multiple inputs integration during an early developmental process, and may prove valuable in directing in vitro differentiation.

2000 ◽  
Vol 113 (15) ◽  
pp. 2695-2703 ◽  
Author(s):  
W. Norris ◽  
C. Neyt ◽  
P.W. Ingham ◽  
P.D. Currie

Muscles are composed of several fibre types, the precise combination of which determines muscle function. Whereas neonatal and adult fibre type is influenced by a number of extrinsic factors, such as neural input and muscle load, there is little knowledge of how muscle cells are initially determined in the early embryo. In the zebrafish, fibres of the slow twitch class arise from precociously specified myoblasts that lie close to the midline whereas the remainder of the myotome differentiates as fast myosin expressing muscle. In vivo evidence has suggested the Sonic Hedgehog glycoprotein, secreted from the notochord, controls the formation of slow twitch and fast twitch muscle fates. Here we describe an in vitro culture system that we have developed to test directly the ability of zebrafish myoblasts to respond to exogenous Sonic Hedgehog peptide. We find that Sonic Hedgehog peptide can control the binary cell fate choice of embryonic zebrafish myoblasts in vitro. We have also used this culture system to assay the relative activities of different Hedgehog-family proteins and to investigate the possible involvement of heterotrimeric G-proteins in Hedgehog signal transduction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hye-Yeong Jo ◽  
Youngsun Lee ◽  
Hongryul Ahn ◽  
Hyeong-Jun Han ◽  
Ara Kwon ◽  
...  

Abstract Human pluripotent stem cells (hPSCs) have promising therapeutic applications due to their infinite capacity for self-renewal and pluripotency. Genomic stability is imperative for the clinical use of hPSCs; however, copy number variation (CNV), especially recurrent CNV at 20q11.21, may contribute genomic instability of hPSCs. Furthermore, the effects of CNVs in hPSCs at the whole-transcriptome scale are poorly understood. This study aimed to examine the functional in vivo and in vitro effects of frequently detected CNVs at 20q11.21 during early-stage differentiation of hPSCs. Comprehensive transcriptome profiling of abnormal hPSCs revealed that the differential gene expression patterns had a negative effect on differentiation potential. Transcriptional heterogeneity identified by single-cell RNA sequencing (scRNA-seq) of embryoid bodies from two different isogenic lines of hPSCs revealed alterations in differentiated cell distributions compared with that of normal cells. RNA-seq analysis of 22 teratomas identified several differentially expressed lineage-specific markers in hPSCs with CNVs, consistent with the histological results of the altered ecto/meso/endodermal ratio due to CNVs. Our results suggest that CNV amplification contributes to cell proliferation, apoptosis, and cell fate specification. This work shows the functional consequences of recurrent genetic abnormalities and thereby provides evidence to support the development of cell-based applications.


2021 ◽  
Author(s):  
Emily Y Su ◽  
Abby Spangler ◽  
Qin Bian ◽  
Jessica Y Kasamoto ◽  
Patrick Cahan

Elucidating regulatory relationships between transcription factors (TFs) and target genes is fundamental to understanding how cells control their identity and behavior. Computational gene regulatory network (GRN) reconstruction methods aim to map this control by inferring relationships from transcriptomic data. Unfortunately, existing methods are imprecise, may be computationally burdensome, and do not illustrate how networks transition from one topology to another. Here we present Epoch, a computational network reconstruction tool that leverages single cell transcriptomics to infer dynamic network structures. Epoch performs favorably when benchmarked on reconstruction of synthetically generated, in vivo, and in vitro data. To illustrate the usefulness of Epoch, we used it to identify the dynamic networks underpinning directed differentiation of mouse ESC guided by multiple primitive streak induction treatments. Our analysis demonstrates that modulating signaling pathways drives topological network changes that shape cell fate potential. We also find that Peg3 is a central contributor to the rewiring of the pluripotency network to favor mesoderm specification. By integrating signaling pathways with GRN structures, we traced how Wnt activation and PI3K suppression govern mesoderm and endoderm specification, respectively. The methods presented here are available in the R package Epoch, and provide a foundation for future work in understanding the biological implications of dynamic regulatory structures.


Development ◽  
1992 ◽  
Vol 116 (Supplement) ◽  
pp. 157-165 ◽  
Author(s):  
R. S. P. Beddington ◽  
P. Rashbass ◽  
V. Wilson

Mouse embryos that are homozygous for the Brachyury (T) deletion die at mid-gestation. They have prominent defects in the notochord, the allantois and the primitive streak. Expression of the T gene commences at the onset of gastrulation and is restricted to the primitive streak, mesoderm emerging from the streak, the head process and the notochord. Genetic evidence has suggested that there may be an increasing demand for T gene function along the rostrocaudal axis. Experiments reported here indicate that this may not be the case. Instead, the gradient in severity of the T defect may be caused by defective mesoderm cell movements, which result in a progressive accumulation of mesoderm cells near the primitive streak. Embryonic stem (ES) cells which are homozygous for the T deletion have been isolated and their differentiation in vitro and in vivo compared with that of heterozygous and wild-type ES cell lines. In +/+ ↔ T/T ES cell chimeras the Brachyury phenotype is not rescued by the presence of wild-type cells and high level chimeras show most of the features characteristic of intact T/T mutants. A few offspring from blastocysts injected with T/T ES cells have been born, several of which had greatly reduced or abnormal tails. However, little or no ES cell contribution was detectable in these animals, either as coat colour pigmentation or by isozyme analysis. Inspection of potential +/+ ↔ T/T ES cell chimeras on the 11th or 12th day of gestation, stages later than that at which intact T/T mutants die, revealed the presence of chimeras with caudal defects. These chimeras displayed a gradient of ES cell colonisation along the rostrocaudal axis with increased colonisation of caudal regions. In addition, the extent of chimerism in ectodermal tissues (which do not invaginate during gastrulation) tended to be higher than that in mesodermal tissues (which are derived from cells invaginating through the primitive streak). These results suggest that nascent mesoderm cells lacking the T gene are compromised in their ability to move away from the primitive streak. This indicates that one function of the T genemay be to regulate cell adhesion or cell motility properties in mesoderm cells. Wild-type cells in +/+ ↔ T/T chimeras appear to move normally to populate trunk and head mesoderm, suggesting that the reduced motility in T/T cells is a cell autonomous defect


Development ◽  
1973 ◽  
Vol 29 (1) ◽  
pp. 159-174
Author(s):  
Nelly Bennett

The detection of a specific enzyme (cysteine lyase) of the yolk-sac endoderm by a very sensitive method is employed to characterize cell differentiation during the early stages of endoderm organogenesis in the chick. The first cells to contain active cysteine lyase are found in the germ wall at the primitive streak stage. In vivo observations establish a relation between the morphological specialization and organization of endodermal cells, their loss of mitotic activity and the increase in cysteine lyase activity. They suggest an influence of the mesoderm on endoderm differentiation. In vitro experiments confirm the existence in the yolk-sac endoderm of an incompatibility between cell proliferation and differentiation, as well as the action of the mesoderm on both the structural organization of the endoblast and the appearance of cysteine lyase; this last action seems to be due mainly to blood cells; chicken and rabbit blood cells are equally active. The problems of the origin of the endoderm and of the interactions occurring during the organogenesis of the yolk-sac endoderm are discussed.


Development ◽  
1991 ◽  
Vol 113 (1) ◽  
pp. 245-255 ◽  
Author(s):  
M. Van Doren ◽  
H.M. Ellis ◽  
J.W. Posakony

In Drosophila, a group of regulatory proteins of the helix-loop-helix (HLH) class play an essential role in conferring upon cells in the developing adult epidermis the competence to give rise to sensory organs. Proteins encoded by the daughterless (da) gene and three genes of the achaete-scute complex (AS-C) act positively in the determination of the sensory organ precursor cell fate, while the extramacrochaetae (emc) and hairy (h) gene products act as negative regulators. In the region upstream of the achaete gene of the AS-C, we have identified three ‘E box’ consensus sequences that are bound specifically in vitro by hetero-oligomeric complexes consisting of the da protein and an AS-C protein. We have used this DNA-binding activity to investigate the biochemical basis of the negative regulatory function of emc. Under the conditions of our experiments, the emc protein, but not the h protein, is able to antagonize specifically the in vitro DNA-binding activity of da/AS-C and putative da/da protein complexes. We interpret these results as follows: the heterodimerization capacity of the emc protein (conferred by its HLH domain) allows it to act in vivo as a competitive inhibitor of the formation of functional DNA-binding protein complexes by the da and AS-C proteins, thereby reducing the effective level of their transcriptional regulatory activity within the cell.


2021 ◽  
Author(s):  
Shijie He ◽  
Peng Lei ◽  
Wenying Kang ◽  
Priscilla Cheung ◽  
Tao Xu ◽  
...  

SummaryDoes fibrotic gut stiffening caused by inflammatory bowel diseases (IBD) direct the fate of intestinal stem cells (ISCs)? To address this question we first developed a novel long-term culture of quasi-3D gut organoids plated on hydrogel matrix of varying stiffness. Stiffening from 0.6kPa to 9.6kPa significantly reduces Lgr5high ISCs and Ki67+ progenitor cells while promoting their differentiation towards goblet cells. These stiffness-driven events are attributable to YAP nuclear translocation. Matrix stiffening also extends the expression of the stemness marker Olfactomedin 4 (Olfm4) into villus-like regions, mediated by cytoplasmic YAP. We next used single-cell RNA sequencing to generate for the first time the stiffness-regulated transcriptional signatures of ISCs and their differentiated counterparts. These signatures confirm the impact of stiffening on ISC fate and additionally suggest a stiffening-induced switch in metabolic phenotype, from oxidative phosphorylation to glycolysis. Finally, we used colon samples from IBD patients as well as chronic colitis murine models to confirm the in vivo stiffening-induced epithelial deterioration similar to that observed in vitro. Together, these results demonstrate stiffness-dependent ISC reprograming wherein YAP nuclear translocation diminishes ISCs and Ki67+ progenitors and drives their differentiation towards goblet cells, suggesting stiffening as potential target to mitigate gut epithelial deterioration during IBD.


2021 ◽  
Vol 22 (17) ◽  
pp. 9517
Author(s):  
Gianluca Testa ◽  
Giorgia Di Benedetto ◽  
Fabiana Passaro

The adult human heart can only adapt to heart diseases by starting a myocardial remodeling process to compensate for the loss of functional cardiomyocytes, which ultimately develop into heart failure. In recent decades, the evolution of new strategies to regenerate the injured myocardium based on cellular reprogramming represents a revolutionary new paradigm for cardiac repair by targeting some key signaling molecules governing cardiac cell fate plasticity. While the indirect reprogramming routes require an in vitro engineered 3D tissue to be transplanted in vivo, the direct cardiac reprogramming would allow the administration of reprogramming factors directly in situ, thus holding great potential as in vivo treatment for clinical applications. In this framework, cellular reprogramming in partnership with nanotechnologies and bioengineering will offer new perspectives in the field of cardiovascular research for disease modeling, drug screening, and tissue engineering applications. In this review, we will summarize the recent progress in developing innovative therapeutic strategies based on manipulating cardiac cell fate plasticity in combination with bioengineering and nanotechnology-based approaches for targeting the failing heart.


Author(s):  
Emma Carley ◽  
Rachel K. Stewart ◽  
Abigail Zieman ◽  
Iman Jalilian ◽  
Diane. E. King ◽  
...  

AbstractWhile the mechanisms by which chemical signals control cell fate have been well studied, how mechanical inputs impact cell fate decisions are not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells, and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.


2018 ◽  
Author(s):  
Mijo Simunovic ◽  
Jakob J. Metzger ◽  
Fred Etoc ◽  
Anna Yoney ◽  
Albert Ruzo ◽  
...  

ABSTRACTBreaking the anterior-posterior (AP) symmetry in mammals takes place at gastrulation. Much of the signaling network underlying this process has been elucidated in the mouse, however there is no direct molecular evidence of events driving axis formation in humans. Here, we use human embryonic stem cells to generate an in vitro 3D model of a human epiblast whose size, cell polarity, and gene expression are similar to a 10-day human epiblast. A defined dose of bone mor-phogenetic protein 4 (BMP4) spontaneously breaks axial symmetry, and induces markers of the primitive streak and epithelial to mesenchymal transition. By gene knockouts and live-cell imaging we show that, downstream of BMP4, WNT3 and its inhibitor DKK1 play key roles in this process. Our work demonstrates that a model human epiblast can break axial symmetry despite no asymmetry in the initial signal and in the absence of extraembryonic tissues or maternal cues. Our 3D model opens routes to capturing molecular events underlying axial symmetry breaking phenomena, which have largely been unexplored in model human systems.


Sign in / Sign up

Export Citation Format

Share Document