scholarly journals Development of Human Neuroblastomas in Mouse-Human Neural Crest Chimeras

2019 ◽  
Author(s):  
Malkiel A. Cohen ◽  
Shupei Zhang ◽  
Satyaki Sengupta ◽  
Haiting Ma ◽  
Brendan Horton ◽  
...  

SummaryNeuroblastoma (NB), derived from the neural crest (NC), is the most common pediatric extracranial solid tumor. Here we establish a platform that allows studying human NBs in mouse-human NC chimeras. Chimeric mice were produced by injecting human NC cells carrying NB relevant oncogenes in-utero into gastrulating mouse embryos. The mice developed tumors composed of a heterogenous cell population that closely resembled that seen in primary NBs of patients but were significantly different from homogenous tumors formed in xenotransplantation models. The human tumors emerged in immunocompetent hosts and were extensively infiltrated by mouse cytotoxic T cells reflecting a vigorous host anti-tumor immune response. However, the tumors blunted the immune response by inducing infiltration of regulatory T cells and expression of immune checkpoints similar to escape mechanisms seen in human cancer patients. Thus, this experimental platform allows studying human tumor initiation, progression, manifestation and tumor – immune-system interactions in an animal model system.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexandra J. Spencer ◽  
Paul F. McKay ◽  
Sandra Belij-Rammerstorfer ◽  
Marta Ulaszewska ◽  
Cameron D. Bissett ◽  
...  

AbstractSeveral vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens. Neutralising titres after heterologous prime-boost were at least comparable or higher than the titres measured after homologous prime boost vaccination with viral vectors. Importantly, the cellular immune response after a heterologous regimen is dominated by cytotoxic T cells and Th1+ CD4 T cells, which is superior to the response induced in homologous vaccination regimens in mice. These results underpin the need for clinical trials to investigate the immunogenicity of heterologous regimens with alternate vaccine technologies.


2011 ◽  
Vol 121 (10) ◽  
pp. 3846-3859 ◽  
Author(s):  
Daniel T. Fisher ◽  
Qing Chen ◽  
Joseph J. Skitzki ◽  
Jason B. Muhitch ◽  
Lei Zhou ◽  
...  

Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1749
Author(s):  
Jing-Jing Wang ◽  
Michelle Kwan-Yee Siu ◽  
Yu-Xin Jiang ◽  
Thomas Ho-Yin Leung ◽  
David Wai Chan ◽  
...  

Programmed cell death 1 ligand (PD-L1) blockade has been used therapeutically in the treatment of ovarian cancer, and potential combination treatment approaches are under investigation to improve the treatment response rate. The increased dependence on glutamine is widely observed in various type of tumors, including ovarian cancer. Kidney-type glutaminase (GLS), as one of the isotypes of glutaminase, is found to promote tumorigenesis. Here, we have demonstrated that the combined treatment with GLS inhibitor 968 and PD-L1 blockade enhances the immune response against ovarian cancer. Survival analysis using the Kaplan–Meier plotter dataset from ovarian cancer patients revealed that the expression level of GLS predicts poor survival and correlates with the immunosuppressive microenvironment of ovarian cancer. 968 inhibits the proliferation of ovarian cancer cells and enhances granzyme B secretion by CD8+ T cells as detected by XTT assay and flow cytometry, respectively. Furthermore, 968 enhances the apoptosis-inducing ability of CD8+ T cells toward cancer cells and improves the treatment effect of anti-PD-L1 in treating ovarian cancer as assessed by Annexin V apoptosis assay. In vivo studies demonstrated the prolonged overall survival upon combined treatment of 968 with anti-PD-L1 accompanied by increased granzyme B secretion by CD4+ and CD8+ T cells isolated from ovarian tumor xenografts. Additionally, 968 increases the infiltration of CD3+ T cells into tumors, possibly through enhancing the secretion of CXCL10 and CXCL11 by tumor cells. In conclusion, our findings provide a novel insight into ovarian cancer cells influence the immune system in the tumor microenvironment and highlight the potential clinical implication of combination of immune checkpoints with GLS inhibitor 968 in treating ovarian cancer.


2020 ◽  
Author(s):  
Qiang Zhang ◽  
Hua Zhong ◽  
Yinchun Fan ◽  
Qian Liu ◽  
Jiancheng Song ◽  
...  

Abstract Background: Immune checkpoints target regulatory pathways in T cells which enhance antitumor immune responses and elicit durable clinical responses . As a novel immune checkpoint, CD96 is an attractive key target for cancer immunotherapy. However, there is no integrative investigation of CD96 in glioma. Our study explored the relationship between CD96 expression and clinical prognosis in glioma. Methods: A total of 1,024 RNA and clinical data were enrolled in this study, including 325 samples from the Chinese Glioma Genome Atlas (CGGA) database and 699 samples from The Cancer Genome Atlas (TCGA) dataset. R language was used to perform statistical analysis and draw figures. Results: CD96 had a consistently positive relationship with glioblastoma and highly enriched in IDH-wildtype and mesenchymal subtype glioma. GO enrichment and GSVA analyses suggested that CD96 was more involved in immune functions, especially related to T cell-mediated immune response in glioma. Subsequent immune infiltration analysis manifes ted that CD96 was positively correlated with infiltrating levels of CD4+ T and CD8+ T cells, macrophages , neutrophils, and DCs in GBM and LGG. Additionally, CD96 was tightly associated with other immune checkpoints including PD-1 , CTLA-4 , TIGIT , and TIM-3 . Univariate and multivariate Cox analysis demonstrated that CD96 acts as an independent indicator of poor prognosis in glioma. Conclusion: CD96 expression was increased in malignant phenotype and negatively associated with overall survival (OS) in glioma. CD96 also showed a positive correlation with other immune checkpoints, immune response, and inflammatory activity. Our findings indicate that CD96 is a promising clinical target for further immunotherapeutic in glioma patients.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Nathalie Vigneron

With the recent developments of adoptive T cell therapies and the use of new monoclonal antibodies against the immune checkpoints, immunotherapy is at a turning point. Key players for the success of these therapies are the cytolytic T lymphocytes, which are a subset of T cells able to recognize and kill tumor cells. Here, I review the nature of the antigenic peptides recognized by these T cells and the processes involved in their presentation. I discuss the importance of understanding how each antigenic peptide is processed in the context of immunotherapy and vaccine delivery.


2019 ◽  
Vol 37 (15_suppl) ◽  
pp. 2607-2607
Author(s):  
David Roumanes ◽  
Evan Newell ◽  
Michael Fehlings

2607 Background: Immunotherapy recent successes have opened new avenues for the treatment of cancer and the presence of tumor-specific CD8+ T cells in tumor-bearing individuals offer a promising therapeutic target. However, the detection and profiling of such T cells are challenging due to the need to detect rare antigen-specific T cell subpopulations in patient samples that are limited in size thus making it difficult to exploit these parameters for predictive signatures of clinical response. Moreover, the identification and analysis of neoantigen-specific CD8+ T-cells in tumor-bearing individuals is challenging due to the small pool of such cells. Methods: In order to identify therapy-relevant tumor antigens and to facilitate a concurrent in-depth characterization of cells directed towards these targets, immunoSCAPE leverages the high-dimensional immune profiling capabilities of cytometry by time of flight (CyTOF) combined with a unique technology allowing the identification rare antigen-specific T-cell subsets. Results: We applied this technology to patient tumor-infiltrating lymphocytes from human cancer samples and tumor-derived neoantigens recognized by T-cells were identified and characterized. Interestingly, the majority of patient-derived tumor infiltrates consisted of tumor-unrelated T-cells characterized by a diverse phenotype. Strikingly, the expression of CD39 was absent from these bystander cells, suggesting that CD39 could be a useful biomarker for the identification of putative tumor-reactive T cells. Conclusions: Simultaneous immune profiling revealed that tumor-unrelated, bystander CD8+ T-cells are phenotypically different in human tumor infiltrates and identified CD39 as a putative marker of neoantigen-specific T-cells. By providing insights into the nature, frequency and phenotype of antigen-specific T-cells, immunoSCAPE’s unique target discovery and high-dimensional immune profiling platform is a valuable tool for the development of novel diagnostic and therapeutic strategies in immunotherapy.


2003 ◽  
Vol 14 (11) ◽  
pp. 1089-1105 ◽  
Author(s):  
Xianzheng Zhou ◽  
Yan Cui ◽  
Xin Huang ◽  
Zhiwei Yu ◽  
Amy M. Thomas ◽  
...  

Author(s):  
Nesrin I. Tarbiah

In December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus (COVID-19), materialized in the city of Wuhan and quickly spread to form a global pandemic. An essential role in the immune system is undertaken by lymphocytes, which defend against bacteria, viruses, fungi, and parasites. Previous study found that very severe COVID-19 patients had suppression of the immune response enabling the virus to spread and cause more damage. This was evident by the changes in their white blood cell and lymphocyte count. Early clinical findings suggest that those suffering from severe COVID-19 have reduced numbers of lymphocytes, monocytes, and other granulocytes. One of the most efficient responses for a variety of viral infections is cellular immune response activation, especially via T cells. Viruses can be eliminated by T cytotoxic (CD8+) (Tc) in the host body, these secrete a variety of molecules, including interferons (IFNs), granzyme, and perforin. T helper (CD4+) (Th) cells help by assisting cytotoxic T cells and B cells to eliminate viral infection. CD8+ and CD4+ work together in a coordinated immune response with other constituents to primarily resolve acute viral infections, and after to produce protection against any reinfection. Also, COVID-19 causes dramatic changes in cytokine profiles and serological markers. Therefore, the subsets of immune cells and the level of the pro-inflammatory cytokines are crucial evidence to determine the severity of COVID-19. The disease severity has already been proved to be associated with the disruption in the proinflammatory chemokine response, this eventually leads to a cytokine storm and progression of cytokines release syndrome (CRS). This review aimed to demonstrate a full understanding of the alterations to the immune response by determining the T-cell expression and cytokine levels against the pathological processes of COVID-19, which can be a significant step in early treatment and diagnosis of this disease, in reduction of COVID-19 mortality cases, and to emphasize the most recent and current studies to try to identify new immuno-therapeutics for COVID-19.  


Sign in / Sign up

Export Citation Format

Share Document