scholarly journals Simultaneous quantification of protein-DNA contacts and transcriptomes in single cells

2019 ◽  
Author(s):  
Koos Rooijers ◽  
Corina M. Markodimitraki ◽  
Franka J. Rang ◽  
Sandra S. de Vries ◽  
Alex Chialastri ◽  
...  

AbstractThe epigenome plays a critical role in regulating gene expression in mammalian cells. However, understanding how cell-to-cell heterogeneity in the epigenome influences gene expression variability remains a major challenge. Here we report a novel method for simultaneous single-cell quantification of protein-DNA contacts with DamID and transcriptomics (scDamID&T). This method enables quantifying the impact of protein-DNA contacts on gene expression from the same cell. By profiling lamina-associated domains (LADs) in human cells, we reveal different dependencies between genome-nuclear lamina (NL) association and gene expression in single cells. In addition, we introduce the E. coli methyltransferase, Dam, as an in vivo marker of chromatin accessibility in single cells and show that scDamID&T can be utilized as a general technology to identify cell types in silico while simultaneously determining the underlying gene-regulatory landscape. With this strategy the effect of chromatin states, transcription factor binding, and genome organization on the acquisition of cell-type specific transcriptional programs can be quantified.

Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. eaba7612 ◽  
Author(s):  
Silvia Domcke ◽  
Andrew J. Hill ◽  
Riza M. Daza ◽  
Junyue Cao ◽  
Diana R. O’Day ◽  
...  

The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type–specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type–specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.


Science ◽  
2020 ◽  
Vol 370 (6518) ◽  
pp. eaba7721 ◽  
Author(s):  
Junyue Cao ◽  
Diana R. O’Day ◽  
Hannah A. Pliner ◽  
Paul D. Kingsley ◽  
Mei Deng ◽  
...  

The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.


2022 ◽  
Author(s):  
Takaho Tsuchiya ◽  
Hiroki Hori ◽  
Haruka Ozaki

Motivation: Cell-cell communications regulate internal cellular states of the cell, e.g., gene expression and cell functions, and play pivotal roles in normal development and disease states. Furthermore, single-cell RNA sequencing methods have revealed cell-to-cell expression variability of highly variable genes (HVGs), which is also crucial. Nevertheless, the regulation on cell-to-cell expression variability of HVGs via cell-cell communications is still unexplored. The recent advent of spatial transcriptome measurement methods has linked gene expression profiles to the spatial context of single cells, which has provided opportunities to reveal those regulations. The existing computational methods extract genes with expression levels that are influenced by neighboring cell types based on the spatial transcriptome data. However, limitations remain in the quantitativeness and interpretability: it neither focuses on HVGs, considers cooperation of neighboring cell types, nor quantifies the degree of regulation with each neighboring cell type. Results: Here, we propose CCPLS (Cell-Cell communications analysis by Partial Least Square regression modeling), which is a statistical framework for identifying cell-cell communications as the effects of multiple neighboring cell types on cell-to-cell expression variability of HVGs, based on the spatial transcriptome data. For each cell type, CCPLS performs PLS regression modeling and reports coefficients as the quantitative index of the cell-cell communications. Evaluation using simulated data showed our method accurately estimated effects of multiple neighboring cell types on HVGs. Furthermore, by applying CCPLS to the two real datasets, we demonstrate CCPLS can be used to extract biologically interpretable insights from the inferred cell-cell communications.


2020 ◽  
Author(s):  
Ying Lei ◽  
Mengnan Cheng ◽  
Zihao Li ◽  
Zhenkun Zhuang ◽  
Liang Wu ◽  
...  

Non-human primates (NHP) provide a unique opportunity to study human neurological diseases, yet detailed characterization of the cell types and transcriptional regulatory features in the NHP brain is lacking. We applied a combinatorial indexing assay, sci-ATAC-seq, as well as single-nuclei RNA-seq, to profile chromatin accessibility in 43,793 single cells and transcriptomics in 11,477 cells, respectively, from prefrontal cortex, primary motor cortex and the primary visual cortex of adult cynomolgus monkey Macaca fascularis. Integrative analysis of these two datasets, resolved regulatory elements and transcription factors that specify cell type distinctions, and discovered area-specific diversity in chromatin accessibility and gene expression within excitatory neurons. We also constructed the dynamic landscape of chromatin accessibility and gene expression of oligodendrocyte maturation to characterize adult remyelination. Furthermore, we identified cell type-specific enrichment of differentially spliced gene isoforms and disease-associated single nucleotide polymorphisms. Our datasets permit integrative exploration of complex regulatory dynamics in macaque brain tissue at single-cell resolution.


2021 ◽  
Author(s):  
Antoine Roux ◽  
Chunlian Zhang ◽  
Jonathan Paw ◽  
José-Zavalara Solorio ◽  
Twaritha Vijay ◽  
...  

Transient induction of pluripotent reprogramming factors has been reported to reverse some features of aging in mammalian cells and tissues. However, the impact of transient reprogramming on somatic cell identity programs and the necessity of individual pluripotency factors remain unknown. Here, we mapped trajectories of transient reprogramming in young and aged cells from multiple murine cell types using single cell transcriptomics to address these questions. We found that transient reprogramming restored youthful gene expression in adipocytes and mesenchymal stem cells but also temporarily suppressed somatic cell identity programs. We further screened Yamanaka Factor subsets and found that many combinations had an impact on aging gene expression and suppressed somatic identity, but that these effects were not tightly entangled. We also found that a transient reprogramming approach inspired by amphibian regeneration restored youthful gene expression in aged myogenic cells. Our results suggest that transient pluripotent reprogramming poses a neoplastic risk, but that restoration of youthful gene expression can be achieved with alternative strategies.


2019 ◽  
Author(s):  
Yang Xu ◽  
Tongye Shen ◽  
Rachel Patton McCord

AbstractBackground3D genome structure contributes to the establishment or maintenance of cell identity in part by organizing genes into spatial active or inactive compartments. Less is known about how compartment switching occurs across different cell types. Rather than analyze individual A/B compartment switches between pairs of cell types, here, we seek to identify coordinated changes in groups of compartment-scale interactions across a spectrum of cell types.ResultsTo characterize the impact of genome folding on cell identity, we integrated 35 Hi-C datasets with 125 DNase-seq, 244 RNA-seq, and 893 ChIP-seq datasets. We first find physical associations with the nuclear lamina inform the most dramatic changes in chromosome structure across cell types. By examining variations in chromosome structure, transcription, and chromatin accessibility, we further observe that certain sets of correlated chromosome structure contacts also co-vary in transcription and chromatin accessibility. Analyzing ChIP-seq signals, we find that sets of chromosome contacts that form and break in sync tend to share active or suppressive histone marks. Finally, we observe that similar principles appear to govern chromosome structure fluctuations across single cells as were found across cell types.ConclusionOur results suggest that cells adapt their chromosome structures, guided by variable associations with the lamina and histone marks, to allocate up-regulatory or down-regulatory resources to certain regions and achieve transcription and chromatin accessibility variation. Our study shows E-PCA can identify the major variable interaction sets within populations of single cells, across broad categories of normal cell types, and between cancer and non-cancerous cell types.


Science ◽  
2018 ◽  
Vol 361 (6409) ◽  
pp. 1380-1385 ◽  
Author(s):  
Junyue Cao ◽  
Darren A. Cusanovich ◽  
Vijay Ramani ◽  
Delasa Aghamirzaie ◽  
Hannah A. Pliner ◽  
...  

Although we can increasingly measure transcription, chromatin, methylation, and other aspects of molecular biology at single-cell resolution, most assays survey only one aspect of cellular biology. Here we describe sci-CAR, a combinatorial indexing–based coassay that jointly profiles chromatin accessibility and mRNA (CAR) in each of thousands of single cells. As a proof of concept, we apply sci-CAR to 4825 cells, including a time series of dexamethasone treatment, as well as to 11,296 cells from the adult mouse kidney. With the resulting data, we compare the pseudotemporal dynamics of chromatin accessibility and gene expression, reconstruct the chromatin accessibility profiles of cell types defined by RNA profiles, and link cis-regulatory sites to their target genes on the basis of the covariance of chromatin accessibility and transcription across large numbers of single cells.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1497
Author(s):  
Pansong Zhang ◽  
Qiao Guo ◽  
Zhihua Wei ◽  
Qin Yang ◽  
Zisheng Guo ◽  
...  

Therapeutics that target the virulence of pathogens rather than their viability offer a promising alternative for treating infectious diseases and circumventing antibiotic resistance. In this study, we searched for anti-virulence compounds against Pseudomonas aeruginosa from Chinese herbs and investigated baicalin from Scutellariae radix as such an active anti-virulence compound. The effect of baicalin on a range of important virulence factors in P. aeruginosa was assessed using luxCDABE-based reporters and by phenotypical assays. The molecular mechanism of the virulence inhibition by baicalin was investigated using genetic approaches. The impact of baicalin on P. aeruginosa pathogenicity was evaluated by both in vitro assays and in vivo animal models. The results show that baicalin diminished a plenty of important virulence factors in P. aeruginosa, including the Type III secretion system (T3SS). Baicalin treatment reduced the cellular toxicity of P. aeruginosa on the mammalian cells and attenuated in vivo pathogenicity in a Drosophila melanogaster infection model. In a rat pulmonary infection model, baicalin significantly reduced the severity of lung pathology and accelerated lung bacterial clearance. The PqsR of the Pseudomonas quinolone signal (PQS) system was found to be required for baicalin’s impact on T3SS. These findings indicate that baicalin is a promising therapeutic candidate for treating P. aeruginosa infections.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna S. E. Cuomo ◽  
Giordano Alvari ◽  
Christina B. Azodi ◽  
Davis J. McCarthy ◽  
Marc Jan Bonder ◽  
...  

Abstract Background Single-cell RNA sequencing (scRNA-seq) has enabled the unbiased, high-throughput quantification of gene expression specific to cell types and states. With the cost of scRNA-seq decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic variants on gene expression across a plethora of cell types and states and promises to improve our understanding of genetic regulation across tissues in both health and disease. Results While previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL mapping, there are a number of open questions about how best to process scRNA-seq data and adapt bulk methods to optimize sc-eQTL mapping. Here, we evaluate the role of different normalization and aggregation strategies, covariate adjustment techniques, and multiple testing correction methods to establish best practice guidelines. We use both real and simulated datasets across single-cell technologies to systematically assess the impact of these different statistical approaches. Conclusion We provide recommendations for future single-cell eQTL studies that can yield up to twice as many eQTL discoveries as default approaches ported from bulk studies.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 498
Author(s):  
Mojdeh Khajehlandi ◽  
Lotfali Bolboli ◽  
Marefat Siahkuhian ◽  
Mohammad Rami ◽  
Mohammadreza Tabandeh ◽  
...  

Exercise can ameliorate cardiovascular dysfunctions in the diabetes condition, but its precise molecular mechanisms have not been entirely understood. The aim of the present study was to determine the impact of endurance training on expression of angiogenesis-related genes in cardiac tissue of diabetic rats. Thirty adults male Wistar rats were randomly divided into three groups (N = 10) including diabetic training (DT), sedentary diabetes (SD), and sedentary healthy (SH), in which diabetes was induced by a single dose of streptozotocin (50 mg/kg). Endurance training (ET) with moderate-intensity was performed on a motorized treadmill for six weeks. Training duration and treadmill speed were increased during five weeks, but they were kept constant at the final week, and slope was zero at all stages. Real-time polymerase chain reaction (RT-PCR) analysis was used to measure the expression of myocyte enhancer factor-2C (MEF2C), histone deacetylase-4 (HDAC4) and Calmodulin-dependent protein kinase II (CaMKII) in cardiac tissues of the rats. Our results demonstrated that six weeks of ET increased gene expression of MEF2C significantly (p < 0.05), and caused a significant reduction in HDAC4 and CaMKII gene expression in the DT rats compared to the SD rats (p < 0.05). We concluded that moderate-intensity ET could play a critical role in ameliorating cardiovascular dysfunction in a diabetes condition by regulating the expression of some angiogenesis-related genes in cardiac tissues.


Sign in / Sign up

Export Citation Format

Share Document