scholarly journals Analysis of genetic networks regulating refractive eye development in collaborative cross progenitor strain mice reveals new genes and pathways underlying human myopia

2019 ◽  
Author(s):  
Tatiana V. Tkatchenko ◽  
Rupal L. Shah ◽  
Takayuki Nagasaki ◽  
Andrei V. Tkatchenko ◽  
◽  
...  

AbstractPopulation studies suggest that genetic factors play an important role in refractive error development; however, the precise role of genetic background and the composition of the signaling pathways underlying refractive eye development remain poorly understood. Here, we analyzed normal refractive development and susceptibility to form-deprivation myopia in the eight progenitor mouse strains of the Collaborative Cross (CC). Genetic background strongly influenced both baseline refractive development and susceptibility to environmentally-induced myopia. Baseline refractive errors ranged from −21.2 diopters (D) in 129S1/svlmj mice to +22.0 D in CAST/EiJ mice and represented a continuous distribution typical of a quantitative genetic trait. The extent of induced form-deprivation myopia ranged from −5.6 D in NZO/HILtJ mice to −20.0 D in CAST/EiJ mice and also followed a continuous distribution. Whole-genome (RNA-seq) gene expression profiling in retinae from CC progenitor strains identified genes whose expression level correlated with either baseline refractive error or susceptibility to myopia. Expression levels of 2,302 genes correlated with the baseline refractive state of the eye, whereas 1,917 genes correlated with susceptibility to induced myopia. Genome-wide gene-based association analysis in the CREAM and UK Biobank human cohorts revealed that 985 of the above genes were associated with refractive error development in humans, including 847 genes which were implicated in the development of human myopia for the first time. Although the gene sets controlling baseline refractive development and those regulating susceptibility to myopia overlapped, these two processes appeared to be controlled by largely distinct sets of genes. Comparison with data for other animal models of myopia revealed that the genes identified in this study comprise a well-defined set of retinal signaling pathways, which are highly conserved across different species. These results provide attractive targets for the development of anti-myopia drugs.Author SummarySeveral lines of evidence suggest that variations in genetic background have a strong impact on a default (baseline) trajectory of eye growth and refractive development. Many studies also highlighted differences in susceptibility of different individuals to environmentally induced changes in refractive eye development, suggesting that genetic background plays an important role in visual regulation of eye growth. However, genes and signaling pathways that control the baseline trajectory of refractive eye development and those that regulate the impact of visual environment on refractive eye development are still poorly understood. Our data suggest that both processes are regulated by elaborate retinal genetic networks. Surprisingly, we found that although genes that control baseline refractive eye development and genes regulating the impact of visual environment on refractive development overlap, there is a large number of genes and pathways which exclusively control either the baseline trajectory of refractive eye development or the impact of visual environment on refractive development. Moreover, we found that many of the genes and pathways, which we found to be associated with either baseline refractive development or susceptibility to environmentally induced myopia in mice, are also associated with refractive error development in the human population and are highly conserved across different species. Identification of genes and pathways that underlie visual regulation of eye growth versus genes and pathways that control default trajectory of refractive eye development sheds light on the basic mechanisms of eye emmetropization and provides previously unexplored possibilities for the development of new treatment options for myopia.

2018 ◽  
Author(s):  
Ross F. Collery ◽  
Brian A. Link

AbstractMutations in LRP2, a transmembrane receptor, cause ocular enlargement and high-myopia. LRP2 is expressed by the RPE and eye ciliary epithelia, binding many extracellular ligands, including Bmp4 and Shh. Signaling mediated by LRP2 is very context-dependent, and how multiple pathways are coordinated is unknown. Transcriptome analyses of ocular tissues revealed that controlled, sustained BMP signaling from the RPE is critical for normal eye growth and emmetropia (proper refraction). Using zebrafish, we demonstrate that BACE sheddase-dependent LRP2 cleavage produces a soluble domain that binds BMP4, inhibiting its signaling. We propose that controlled proteolytic cleavage of LRP2 makes two ligand-binding receptor forms available: a soluble BMP trap, and a membrane-bound RPE signaling facilitator. By modulating LRP2 cleavage, cells can fine-tune and coordinate multiple signaling pathways, as well as growth and turnover of the extracellular matrix, control of which is important to maintain proper eye size. This data supports the concept that LRP2 acts as a homeostasis node that buffers and integrates diverse signaling to regulate emmetropic eye growth.Author SummaryFor proper focusing and normal vision, the axial length of the eye needs to match the refractive power of the lens. This is achieved by fine-tuning multiple signaling pathways to regulate the shape of the eye primarily by remodeling of the sclera, the outermost layer of the eye. This process is termed emmetropization. Emmetropization cues are initiated by visual input, but how signals are transduced from the photoreceptors across the retinal pigment epithelium to the sclera is incompletely understood. Here we show that cleavage of Lrp2, a large receptor expressed on RPE cells in the eye, alters BMP signaling, which contributes to proper eye size control. Dysregulation of BMP signaling by a) absence of Lrp2 in mutant zebrafish or b) overexpression of BMP antagonists from the RPE both cause eye enlargement and myopia. Understanding how regulated cleavage of Lrp2 affects paracrine signaling provides critical insight to emmetropization, raising the possibility for development of therapeutic agents to combat the epidemic incidence of refractive error.


2019 ◽  
Vol 15 (3) ◽  
pp. 172-173 ◽  
Author(s):  
Valdemar Grill ◽  
Bjørn O. Åsvold

Latent Autoimmune Diabetes in the Adult, LADA has been investigated less than “classical” type 1 and type 2 diabetes and the criteria for and the relevance of a LADA diagnosis has been challenged. Despite the absence of a genetic background that is exclusive to LADA, this form of diabetes displays phenotypic characteristics that distinguish it from other forms of diabetes. LADA is heterogeneous in terms of the impact of autoimmunity and lifestyle factors, something that poses problems as to therapy and follow-up perhaps particularly in those with marginal positivity. Yet, there appears to be clear clinical utility in classifying individuals as LADA.


2020 ◽  
Vol 14 (1) ◽  
pp. 88-100
Author(s):  
Fares E.M. Ali ◽  
Heba M. Saad Eldien ◽  
Nashwa A.M. Mostafa ◽  
Abdulrahman H. Almaeen ◽  
Mohamed R.A. Marzouk ◽  
...  

Objective: The present study was conducted to elucidate the underlying molecular mechanism as well as the potential hepatoprotective effects of royal jelly (RJ) against hepatic ischemia/reperfusion (IR) injury. Methods: Rats were assigned into four groups; sham (received vehicle), IR (30 minutes ischemia and 45 minutes reperfusion), sham pretreated with RJ (200 mg/kg P.O.), and IR pretreated with RJ (200 mg/kg P.O.). The experiment has lasted for 28 days. Results: Hepatic IR significantly induced hepatic dysfunctions, as manifested by elevation of serum transaminases, ALP and LDH levels. Moreover, hepatic IR caused a significant up-regulation of P38-MAPK, NF-κB-p65, TNF-α and MDA levels along with marked down-regulation of Nrf-2, HO-1, COX-4, cytoglobin, IκBa, IL-10, GSH, GST and SOD levels. Additionally, marked histopathological changes were observed after hepatic IR injury. On the contrary, pretreatment with RJ significantly improved hepatic functions along with the alleviation of histopathological changes. Moreover, RJ restored oxidant/antioxidant balance as well as hepatic expressions of Nrf-2, HO-1, COX-4, and cytoglobin. Simultaneously, RJ significantly mitigated the inflammatory response by down-regulation of P38-MAPK, NF-κB-p65, TNF-α expression. Conclusion: The present results revealed that RJ has successfully protected the liver against hepatic IR injury through modulation of cytoglobin, Nrf-2/HO-1/COX-4, and P38-MAPK/NF-κB-p65/TNF-α signaling pathways.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Camille Ternet ◽  
Christina Kiel

AbstractThe intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer.


2019 ◽  
Vol 109 ◽  
pp. 47-56 ◽  
Author(s):  
Emad H.M. Hassanein ◽  
Abdel-Gawad S. Shalkami ◽  
Marwa M. Khalaf ◽  
Wafaa R. Mohamed ◽  
Ramadan A.M. Hemeida

2021 ◽  
Author(s):  
Emma Haley ◽  
Mederbek Matmusaev ◽  
Imtiyaz N. Hossain ◽  
Sean Davin ◽  
Tammy M. Martin ◽  
...  

AbstractBackgroundOverexpression of IL-23 in adult mice by means of hydrodynamic tail vein injection of IL-23 minicircles has been reported to result in spondyloarthritis-like disease. The impact of genetic background and sex on the disease phenotype in this model has not been investigated.MethodsWe compared male B10.RIII mice with male C57BL/6 mice, and male with female B10.RIII mice after hydrodynamic injection of IL-23 enhanced episomal vector (EEV) at 8-12 weeks of age. We monitored clinical arthritis scores, paw swelling, and body weight. Animals were euthanized after two weeks and tissues were harvested for histology, flow cytometry and gene expression analysis. Serum cytokine levels were determined by ELISA.FindingsMale B10.RIII mice developed arthritis in the forepaws and feet within 6 days after IL-23 EEV injection; they also exhibited psoriasis-like skin disease, colitis, weight loss, and osteopenia. In contrast to previous reports, we did not observe spondylitis or uveitis. Male C57BL/6 mice injected with IL-23 EEV had serum IL-23 levels comparable with B10.RIII mice and developed skin inflammation, colitis, weight loss, and osteopenia but failed to develop arthritis. Female B10.RIII mice had more severe arthritis than male B10.RIII mice but did not lose weight.ConclusionsSystemic IL-23 overexpression results in spondyloarthritis-like disease in B10.RIII mice. The development of extra-articular manifestations but absence of arthritis in C57BL/6 mice suggests organ-specific genetic control mechanisms of IL-23 driven inflammation. Discrepancies regarding the phenotype of IL-23 induced disease in different labs and the sexual dimorphism observed in this study warrant further exploration.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2803
Author(s):  
Kareem Allinjawi ◽  
Sharanjeet-Kaur Sharanjeet-Kaur ◽  
Saadah Mohamed Akhir ◽  
Haliza Abdul Mutalib

Aim: The purpose of this study was to determine the changes in the relative peripheral refractive error produced by soft single vision contact lenses in myopic schoolchildren. Methods: 27 myopic schoolchildren aged between 13 to 15 years were included in this study. The measurements of central and peripheral refraction were made only on the right eye using a Grand-Seiko WR-5100K open-field autorefractometer without contact lens (WL), and with wearing single vision contact lens (SVCL). Refractive power was measured at center and horizontal eccentricity between 35° temporal to 35° nasal visual field (in 5° steps). Results: SVCL showed an increase in peripheral hyperopic defocus at the nasal and temporal visual field compare with baseline, but this change was not statistically significant (p=0.129). Conclusion: Wearing single vision soft contact lenses increases the relative peripheral hyperopic defocus in myopic schoolchildren.


Author(s):  
Vladimir A. Kostyuk ◽  
Ahmed Albuhaydar ◽  
Alla I. Potapovich ◽  
Lyudmila G. Korkinа

In this study it was investigated the responses of cultured human cells – keratinocytes and fibroblasts to physiological doses of ultraviolet radiation (UVR) applied with or without plant polyphenolic compounds: rutin, quercetin, taxofolin, silybin and baikalein. Experimental data obtained in this work indicate the presence of synergism in the action of physiological doses of UVR and plant polyphenolic compounds on inflammatory signaling pathways in keratinocytes and fibroblasts. It is concluded that the identified synergies can contribute to the adaptation of the skin to subsequent exposure to UVR, and thus be one of the photoprotective mechanisms of the plant polyphenolic compounds.


2020 ◽  
Author(s):  
S. Mahnaz ◽  
L. Das Roy ◽  
M. Bose ◽  
C. De ◽  
S. Nath ◽  
...  

ABSTRACTMyeloid-derived suppressor cells (MDSCs) are immature myeloid cells that are responsible for immunosuppression in tumor microenvironment. Here we report the impact of mucin 1 (MUC1), a transmembrane glycoprotein, on proliferation and functional activity of MDSCs. To determine the role of MUC1 in MDSC phenotype, we analyzed MDSCs derived from wild type (WT) and MUC1-knockout (MUC1KO) mice bearing pancreatic ductal adenocarcinoma KCKO and breast cancer C57MG xenografts. We observed enhanced tumor growth in MUC1KO mice compared to WT mice in both pancreatic KCKO and breast C57MG cancer models due to increased MDSC population and enrichment of Tregs in tumor microenvironment. Our current study shows that knockdown of MUC1 in MDSCs promotes proliferation and immature suppressive phenotype indicated by increased level of iNOS, ARG1 activity and TGF-β secretion under cancer conditions. Increased activity of MDSCs leads to repression of IL-2 and IFN-ɣ production by T-cells. We were able to find that MDSCs from MUC1KO mice have higher levels of c-Myc and activated pSTAT3 as compared to MUC1 WT mice, that are signaling pathways leading to increased survival, proliferation and prevention of maturation. In summary, MUC1 regulates signaling pathways that maintain immunosuppressive properties of MDSCs. Thus, immunotherapy must target only tumor associated MUC1 on epithelial cells and not MUC1 on hematopoietic cells to avoid expansion and suppressive functions of MDSC.


Sign in / Sign up

Export Citation Format

Share Document