scholarly journals Conjugated linolenic fatty acids trigger ferroptosis in triple-negative breast cancer

2019 ◽  
Author(s):  
Alexander Beatty ◽  
Tanu Singh ◽  
Yulia Y. Tyurina ◽  
Emmanuelle Nicolas ◽  
Kristen Maslar ◽  
...  

Ferroptosis is a non-apoptotic form of cell death linked to the accumulation of reactive hydroperoxides generated by oxidation of polyunsaturated fatty acids (PUFAs) in membrane phospholipids. The therapeutic potential of promoting ferroptosis by enriching PUFAs in cancer cells is unknown. We found an association between elevated PUFA levels and vulnerability to ferroptosis in triple-negative breast cancer (TNBC) cells. A screen of PUFAs identified conjugated linolenic acids, including α-eleostearate, as ferroptosis inducers. Three conjugated double bonds were required for ferroptotic activity although their positioning and stereochemistry were less significant. Mechanistically, α-eleostearate differed from canonical ferroptosis inducers by a distinct dependence on acyl-CoA synthetase long-chain isoforms and by not altering glutathione or glutathione peroxidase 4 activity. Orally administered tung oil, naturally rich in α-eleostearate, limited tumor growth and metastasis in an aggressive TNBC xenograft model. These results expand our understanding of ferroptotic cell death and highlight the anti-cancer potential of conjugated PUFAs.




2020 ◽  
Vol 43 (6) ◽  
pp. 1049-1066
Author(s):  
Yang Zhang ◽  
Bingwei Xu ◽  
Junfeng Shi ◽  
Jieming Li ◽  
Xinlan Lu ◽  
...  

Abstract Purpose Stemming from a myriad of genetic and epigenetic alterations, triple-negative breast cancer (TNBC) is tied to poor clinical outcomes and aspires for individualized therapies. Here we investigated the therapeutic potential of co-inhibiting integrin-dependent signaling pathway and BRD4, a transcriptional and epigenetic mediator, for TNBC. Methods Two independent patient cohorts were subjected to bioinformatic and IHC examination for clinical association of candidate cancer drivers. The efficacy and biological bases for co-targeting these drivers were interrogated using cancer cell lines, a protein kinase array, chemical inhibitors, RNAi/CRISPR/Cas9 approaches, and a 4 T1-Balb/c xenograft model. Results We found that amplification of the chromosome 8q24 region occurred in nearly 20% of TNBC tumors, and that it coincided with co-upregulation or amplification of c-Myc and FAK, a key effector of integrin-dependent signaling. This co-upregulation at the mRNA or protein level correlated with a poor patient survival (p < 0.0109 or p < 0.0402, respectively). Furthermore, we found that 14 TNBC cell lines exhibited high vulnerabilities to the combination of JQ1 and VS-6063, potent pharmacological antagonists of the BRD4/c-Myc and integrin/FAK-dependent pathways, respectively. We also observed a cooperative inhibitory effect of JQ1 and VS-6063 on tumor growth and infiltration of Ly6G+ myeloid-derived suppressor cells in vivo. Finally, we found that JQ1 and VS-6063 cooperatively induced apoptotic cell death by altering XIAP, Bcl2/Bcl-xl and Bim levels, impairing c-Src/p130Cas-, PI3K/Akt- and RelA-associated signaling, and were linked to EMT-inducing transcription factor Snail- and Slug-dependent regulation. Conclusion Based on our results, we conclude that the BRD4/c-Myc- and integrin/FAK-dependent pathways act in concert to promote breast cancer cell survival and poor clinical outcomes. As such, they represent promising targets for a synthetic lethal-type of therapy against TNBC.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sofia M. Saraiva ◽  
Carlha Gutiérrez-Lovera ◽  
Jeannette Martínez-Val ◽  
Sainza Lores ◽  
Belén L. Bouzo ◽  
...  

AbstractTriple negative breast cancer (TNBC) is known for being very aggressive, heterogeneous and highly metastatic. The standard of care treatment is still chemotherapy, with adjacent toxicity and low efficacy, highlighting the need for alternative and more effective therapeutic strategies. Edelfosine, an alkyl-lysophospholipid, has proved to be a promising therapy for several cancer types, upon delivery in lipid nanoparticles. Therefore, the objective of this work was to explore the potential of edelfosine for the treatment of TNBC. Edelfosine nanoemulsions (ET-NEs) composed by edelfosine, Miglyol 812 and phosphatidylcholine as excipients, due to their good safety profile, presented an average size of about 120 nm and a neutral zeta potential, and were stable in biorelevant media. The ability of ET-NEs to interrupt tumor growth in TNBC was demonstrated both in vitro, using a highly aggressive and invasive TNBC cell line, and in vivo, using zebrafish embryos. Importantly, ET-NEs were able to penetrate through the skin barrier of MDA-MB 231 xenografted zebrafish embryos, into the yolk sac, leading to an effective decrease of highly aggressive and invasive tumoral cells’ proliferation. Altogether the results demonstrate the potential of ET-NEs for the development of new therapeutic approaches for TNBC.



Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1212
Author(s):  
Getinet M. Adinew ◽  
Equar Taka ◽  
Patricia Mendonca ◽  
Samia S. Messeha ◽  
Karam F. A. Soliman

Triple- negative breast cancer (TNBC) incidence rate has regularly risen over the last decades and is expected to increase in the future. Finding novel treatment options with minimum or no toxicity is of great importance in treating or preventing TNBC. Flavonoids are new attractive molecules that might fulfill this promising therapeutic option. Flavonoids have shown many biological activities, including antioxidant, anti-inflammatory, and anticancer effects. In addition to their anticancer effects by arresting the cell cycle, inducing apoptosis, and suppressing cancer cell proliferation, flavonoids can modulate non-coding microRNAs (miRNAs) function. Several preclinical and epidemiological studies indicate the possible therapeutic potential of these compounds. Flavonoids display a unique ability to change miRNAs’ levels via different mechanisms, either by suppressing oncogenic miRNAs or activating oncosuppressor miRNAs or affecting transcriptional, epigenetic miRNA processing in TNBC. Flavonoids are not only involved in the regulation of miRNA-mediated cancer initiation, growth, proliferation, differentiation, invasion, metastasis, and epithelial-to-mesenchymal transition (EMT), but also control miRNAs-mediated biological processes that significantly impact TNBC, such as cell cycle, immune system, mitochondrial dysregulation, modulating signaling pathways, inflammation, and angiogenesis. In this review, we highlighted the role of miRNAs in TNBC cancer progression and the effect of flavonoids on miRNA regulation, emphasizing their anticipated role in the prevention and treatment of TNBC.



Author(s):  
Wei Xie ◽  
Huijie Zhao ◽  
Fengxian Wang ◽  
Yiyun Wang ◽  
Yuan He ◽  
...  

Abstract Background Anti-angiogenic therapy has been widely applied to the clinical treatment of malignant tumors. However, the efficacy of such treatments has been called into question, especially in triple-negative breast cancer (TNBC). Bevacizumab, the first anti-angiogenic agent approved by FDA, actually increases invasive and metastatic properties of TNBC cells, resulting from the activation of Wnt/β-catenin signaling in response to hypoxia. As a critical receptor of Wnt/β-catenin signaling, Frizzled-7 (Fzd7) is aberrantly expressed in TNBC, indicating Fzd7 a potential target for developing drugs to be combined with anti-angiogenic agents. Methods Hybridoma technique and antibody humanization technique were utilized to generate a Fzd7-targeting antibody (SHH002-hu1). Biolayer interferometry (BLI) assay and near infrared (NIR) imaging were conducted to detect the affinity and targeting ability of SHH002-hu1. Next, whether SHH002-hu1 could suppress the invasion and migration of TNBC cells induced by Bevacizumab were validated, and the underlying molecular mechanisms were elucidated by luciferase reporter and western blot assays. The nude-mice transplanted TNBC models were established to assess the anti-TNBC activities of SHH002-hu1 when combined with Bevacizumab. Then, the effects on putative TNBC stem-like cells and Wnt/β-catenin signaling were evaluated by immunofluorescence (IF). Further, the tumor-initiating and self-renew capacity of TNBC cells were studied by secondary nude mouse xenograft model and sphere formation assay. In addition, the effects of SHH002-hu1 on the adaptation of TNBC cells to hypoxia were evaluated by the detection of vasculogenic mimicry (VM) and hypoxia-inducible factor-1α (HIF-1α) transcriptional activity. Results The novel humanized antibody targeting Fzd7 (SHH002-hu1) exhibited extremely high affinity with Fzd7, and specifically targeted to Fzd7+ cells and tumor tissues. SHH002-hu1 repressed invasion, migration and epithelial-mesenchymal cell transformation (EMT) of TNBC cells induced by Bevacizumab through abating Wnt/β-catenin signaling. SHH002-hu1 significantly enhanced the capacity of Bevacizumab to inhibit the growth of TNBC via reducing the subpopulation of putative TNBC stem-like cells, further attenuating Bevacizumab-enhanced tumor-initiating and self-renew capacity of TNBC cells. Moreover, SHH002-hu1 effectively restrained the adaptation of TNBC cells to hypoxia via disrupting Wnt/β-catenin signaling. Conclusion SHH002-hu1 significantly enhances the anti-TNBC capacity of Bevacizumab, and shows the potential of preventing TNBC recurrence, suggesting SHH002-hu1 a good candidate for the synergistic therapy together with Bevacizumab.



2018 ◽  
Vol 36 (1) ◽  
Author(s):  
Eliana La Rocca ◽  
Michela Dispinzieri ◽  
Laura Lozza ◽  
Gabriella Mariani ◽  
Serena Di Cosimo ◽  
...  




Sign in / Sign up

Export Citation Format

Share Document