scholarly journals FUS ALS-causative mutations impact FUS autoregulation and the processing of RNA-binding proteins through intron retention

2019 ◽  
Author(s):  
Jack Humphrey ◽  
Nicol Birsa ◽  
Carmelo Milioto ◽  
David Robaldo ◽  
Andrea B Eberle ◽  
...  

AbstractMutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease in which the loss of motor neurons induces progressive weakness and death from respiratory failure, typically only 3-5 years after onset. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterised, as most disease models have been based on FUS overexpression, which in itself alters its RNA processing functions. To overcome this, we and others have recently created knock-in models, and have generated high depth RNA-sequencing data on FUS mutants in parallel to FUS knockout. We combined three independent datasets with a joint modelling approach, allowing us to compare the mutation-induced changes to genuine loss of function. We find that FUS ALS-mutations induce a widespread loss of function on expression and splicing, with a preferential effect on RNA binding proteins. Mutant FUS induces intron retention changes through RNA binding, and we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS regulation has been linked to disease, and intriguingly, we find FUS autoregulation to be altered not only by FUS mutations, but also in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.

2020 ◽  
Vol 48 (12) ◽  
pp. 6889-6905 ◽  
Author(s):  
Jack Humphrey ◽  
Nicol Birsa ◽  
Carmelo Milioto ◽  
Martha McLaughlin ◽  
Agnieszka M Ule ◽  
...  

Abstract Mutations in the RNA-binding protein FUS cause amyotrophic lateral sclerosis (ALS), a devastating neurodegenerative disease. FUS plays a role in numerous aspects of RNA metabolism, including mRNA splicing. However, the impact of ALS-causative mutations on splicing has not been fully characterized, as most disease models have been based on overexpressing mutant FUS, which will alter RNA processing due to FUS autoregulation. We and others have recently created knockin models that overcome the overexpression problem, and have generated high depth RNA-sequencing on FUS mutants in parallel to FUS knockout, allowing us to compare mutation-induced changes to genuine loss of function. We find that FUS-ALS mutations induce a widespread loss of function on expression and splicing. Specifically, we find that mutant FUS directly alters intron retention levels in RNA-binding proteins. Moreover, we identify an intron retention event in FUS itself that is associated with its autoregulation. Altered FUS levels have been linked to disease, and we show here that this novel autoregulation mechanism is altered by FUS mutations. Crucially, we also observe this phenomenon in other genetic forms of ALS, including those caused by TDP-43, VCP and SOD1 mutations, supporting the concept that multiple ALS genes interact in a regulatory network.


2021 ◽  
Author(s):  
Keisuke Hitachi ◽  
Yuri Kiyofuji ◽  
Masashi Nakatani ◽  
Kunihiro Tsuchida

RNA-binding proteins (RBPs) regulate cell physiology via the formation of ribonucleic-protein complexes with coding and non-coding RNAs. RBPs have multiple functions in the same cells; however, the precise mechanism through which their pleiotropic functions are determined remains unknown. In this study, we revealed the multiple inhibitory functions of hnRNPK for myogenic differentiation. We first identified hnRNPK as a lncRNA Myoparr binding protein. Gain- and loss-of-function experiments showed that hnRNPK repressed the expression of myogenin at the transcriptional level via binding to Myoparr. Moreover, hnRNPK repressed the expression of a set of genes coding for aminoacyl-tRNA synthetases in a Myoparr-independent manner. Mechanistically, hnRNPK regulated the eIF2α/Atf4 pathway, one branch of the intrinsic pathways of the endoplasmic reticulum sensors, in differentiating myoblasts. Thus, our findings demonstrate that hnRNPK plays multiple lncRNA-dependent and -independent roles in the inhibition of myogenic differentiation, indicating that the analysis of lncRNA-binding proteins will be useful for elucidating both the physiological functions of lncRNAs and the multiple functions of RBPs.


2021 ◽  
Vol 15 ◽  
Author(s):  
Benjamin L. Zaepfel ◽  
Jeffrey D. Rothstein

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that affects upper and lower motor neurons. Familial ALS accounts for a small subset of cases (<10–15%) and is caused by dominant mutations in one of more than 10 known genes. Multiple genes have been causally or pathologically linked to both ALS and frontotemporal dementia (FTD). Many of these genes encode RNA-binding proteins, so the role of dysregulated RNA metabolism in neurodegeneration is being actively investigated. In addition to defects in RNA metabolism, recent studies provide emerging evidence into how RNA itself can contribute to the degeneration of both motor and cortical neurons. In this review, we discuss the roles of altered RNA metabolism and RNA-mediated toxicity in the context of TARDBP, FUS, and C9ORF72 mutations. Specifically, we focus on recent studies that describe toxic RNA as the potential initiator of disease, disease-associated defects in specific RNA metabolism pathways, as well as how RNA-based approaches can be used as potential therapies. Altogether, we highlight the importance of RNA-based investigations into the molecular progression of ALS, as well as the need for RNA-dependent structural studies of disease-linked RNA-binding proteins to identify clear therapeutic targets.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Barbara Celona ◽  
John von Dollen ◽  
Sarat C Vatsavayai ◽  
Risa Kashima ◽  
Jeffrey R Johnson ◽  
...  

Expanded GGGGCC repeats in the first intron of the C9orf72 gene represent the most common cause of familial amyotrophic lateral sclerosis (ALS), but the mechanisms underlying repeat-induced disease remain incompletely resolved. One proposed gain-of-function mechanism is that repeat-containing RNA forms aggregates that sequester RNA binding proteins, leading to altered RNA metabolism in motor neurons. Here, we identify the zinc finger protein Zfp106 as a specific GGGGCC RNA repeat-binding protein, and using affinity purification-mass spectrometry, we show that Zfp106 interacts with multiple other RNA binding proteins, including the ALS-associated factors TDP-43 and FUS. We also show that Zfp106 knockout mice develop severe motor neuron degeneration, which can be suppressed by transgenic restoration of Zfp106 specifically in motor neurons. Finally, we show that Zfp106 potently suppresses neurotoxicity in a Drosophila model of C9orf72 ALS. Thus, these studies identify Zfp106 as an RNA binding protein with important implications for ALS.


2019 ◽  
Author(s):  
Giulia E. Tyzack ◽  
Raphaelle Luisier ◽  
Doaa M. Taha ◽  
Jacob Neeves ◽  
Miha Modic ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS)-causing mutations clearly implicate ubiquitously expressed and predominantly nuclear RNA binding proteins (RBPs), which form pathological cytoplasmic inclusions in this context. However, the possibility that wild-type RBPs mislocalize without necessarily becoming constituents of ALS cytoplasmic inclusions themselves remains unexplored. We hypothesized that nuclear-to-cytoplasmic mislocalization of the RBP Fused in Sarcoma (FUS), in an unaggregated state, may occur more widely in ALS that previously recognized. To address this hypothesis, we analysed motor neurons (MNs) from an human ALS induced-pluripotent stem cells (iPSC) model caused by the VCP mutation. Additionally, we examined mouse transgenic models and post-mortem tissue from human sporadic ALS cases. We report nuclear-to-cytoplasmic mislocalization of FUS in both VCP-mutation related ALS and, crucially, in sporadic ALS spinal cord tissue from multiple cases. Furthermore, we provide evidence that FUS protein binds to an aberrantly retained intron within the SFPQ transcript, which is exported from the nucleus into the cytoplasm. Collectively, these data support a model for ALS pathogenesis whereby aberrant intron-retention in SFPQ transcripts contributes to FUS mislocalization through their direct interaction and nuclear export. In summary, we report widespread mislocalization of the FUS protein in ALS and propose a putative underlying mechanism for this process.


2013 ◽  
Vol 201 (3) ◽  
pp. 361-372 ◽  
Author(s):  
Yun R. Li ◽  
Oliver D. King ◽  
James Shorter ◽  
Aaron D. Gitler

Amyotrophic lateral sclerosis (ALS) is a fatal human neurodegenerative disease affecting primarily motor neurons. Two RNA-binding proteins, TDP-43 and FUS, aggregate in the degenerating motor neurons of ALS patients, and mutations in the genes encoding these proteins cause some forms of ALS. TDP-43 and FUS and several related RNA-binding proteins harbor aggregation-promoting prion-like domains that allow them to rapidly self-associate. This property is critical for the formation and dynamics of cellular ribonucleoprotein granules, the crucibles of RNA metabolism and homeostasis. Recent work connecting TDP-43 and FUS to stress granules has suggested how this cellular pathway, which involves protein aggregation as part of its normal function, might be coopted during disease pathogenesis.


GigaScience ◽  
2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Florian Heyl ◽  
Rolf Backofen

Abstract Background The prediction of binding sites (peak-calling) is a common task in the data analysis of methods such as cross-linking immunoprecipitation in combination with high-throughput sequencing (CLIP-Seq). The predicted binding sites are often further analyzed to predict sequence motifs or structure patterns. When looking at a typical result of such high-throughput experiments, the obtained peak profiles differ largely on a genomic level. Thus, a tool is missing that evaluates and classifies the predicted peaks on the basis of their shapes. We hereby present StoatyDive, a tool that can be used to filter for specific peak profile shapes of sequencing data such as CLIP. Findings With StoatyDive we are able to classify peak profile shapes from CLIP-seq data of the histone stem-loop-binding protein (SLBP). We compare the results to existing tools and show that StoatyDive finds more distinct peak shape clusters for CLIP data. Furthermore, we present StoatyDive’s capabilities as a quality control tool and as a filter to pick different shapes based on biological or technical questions for other CLIP data from different RNA binding proteins with different biological functions and numbers of RNA recognition motifs. We finally show that proteins involved in splicing, such as RBM22 and U2AF1, have potentially sharper-shaped peaks than other RNA binding proteins. Conclusion StoatyDive finally fills the demand for a peak shape clustering tool for CLIP-Seq data that fine-tunes downstream analysis steps such as structure or sequence motif predictions and that acts as a quality control.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3005
Author(s):  
Simona Rossi ◽  
Mauro Cozzolino

Amyotrophic Lateral Sclerosis is a neurological disease that primarily affects motor neurons in the cortex, brainstem, and spinal cord. The process that leads to motor neuron degeneration is strongly influenced by non-motor neuronal events that occur in a variety of cell types. Among these, neuroinflammatory processes mediated by activated astrocytes and microglia play a relevant role. In recent years, it has become clear that dysregulation of essential steps of RNA metabolism, as a consequence of alterations in RNA-binding proteins (RBPs), is a central event in the degeneration of motor neurons. Yet, a causal link between dysfunctional RNA metabolism and the neuroinflammatory processes mediated by astrocytes and microglia in ALS has been poorly defined. In this review, we will discuss the available evidence showing that RBPs and associated RNA processing are affected in ALS astrocytes and microglia, and the possible mechanisms involved in these events.


2021 ◽  
Author(s):  
Alexis Brugier ◽  
Mohamed-Lamine Hafirassou ◽  
Marie Pourcelot ◽  
Morgane Baldaccini ◽  
Laurine Couture ◽  
...  

Dengue virus (DENV), a re-emerging virus transmitted by Aedes mosquitoes, causes severe pathogenesis in humans. No effective treatment is available against this virus. We recently identified the scaffold protein RACK1 as a component of the DENV replication complex, a macromolecular complex essential for viral genome amplification. Here, we show that RACK1 is important for DENV infection. RACK1 mediates DENV replication through binding to the 40S ribosomal subunit. Mass spectrometry analysis of RACK1 partners coupled to a loss-of-function screen identified the RNA binding proteins Vigilin and SERBP1 as DENV host dependency factors. Vigilin and SERBP1 interact with DENV viral RNA (vRNA), forming a ternary complex with RACK1 to mediate viral replication. Overall, our results indicate that RACK1 recruits Vigilin and SERBP1, linking the DENV vRNA to the translation machinery for optimal translation and replication.


Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Kun Li ◽  
Zhi-Wei Guo ◽  
Xiang-Ming Zhai ◽  
Xue-Xi Yang ◽  
Ying-Song Wu ◽  
...  

Abstract RNA-binding proteins (RBPs) play important roles in regulating the expression of genes involved in human physiological and pathological processes, especially in cancers. Many RBPs have been found to be dysregulated in cancers; however, there was no tool to incorporate high-throughput data from different dimensions to systematically identify cancer-related RBPs and to explore their causes of abnormality and their potential functions. Therefore, we developed a database named RBPTD to identify cancer-related RBPs in humans and systematically explore their functions and abnormalities by integrating different types of data, including gene expression profiles, prognosis data and DNA copy number variation (CNV), among 28 cancers. We found a total of 454 significantly differentially expressed RBPs, 1970 RBPs with significant prognostic value, and 53 dysregulated RBPs correlated with CNV abnormality. Functions of 26 cancer-related RBPs were explored by analysing high-throughput RNA sequencing data obtained by crosslinking immunoprecipitation, and the remaining RBP functions were predicted by calculating their correlation coefficient with other genes. Finally, we developed the RBPTD for users to explore functions and abnormalities of cancer-related RBPs to improve our understanding of their roles in tumorigenesis. Database URL: http: //www.rbptd.com


Sign in / Sign up

Export Citation Format

Share Document