scholarly journals Extracellular vesicle-mediated RNA release inHistoplasma capsulatum

2019 ◽  
Author(s):  
Lysangela R. Alves ◽  
Roberta Peres da Silva ◽  
David A. Sanchez ◽  
Daniel Zamith-Miranda ◽  
Marcio L. Rodrigues ◽  
...  

AbstractEukaryotic cells, including fungi, release extracellular vesicles (EVs). These lipid bilayered compartments play essential roles in cellular communication and pathogenesis. EV composition is complex and includes proteins, glycans, pigments, and RNA. RNA classes with putative roles in pathogenesis have been described in EVs produced by fungi. Here we describe the RNA content in EVs produced by the G186AR and G217B strains ofHistoplasma capsulatum, an important human fungal pathogen. A total of 124 mRNA were identified in both strains. In this set of RNA classes, 93 transcripts were enriched in EVs from the G217B strain, while 31 enriched in EVs produced by the G186AR strain. This result suggests that there are important strain-specific properties in the mRNA composition of fungal EVs. We also identified short fragments (25-40 long) that were strain-specific, with a greater number of them identified in EVs produced by the G217B strain. Remarkably, the most enriched processes were stress responses and translation. Half of these fragments aligned to the reverse strand of the transcript, suggesting the occurrence of miRNA-like molecules in fungal EVs. We also compared the transcriptome profiles ofH. capsulatumwith the RNA composition of EVs and no correlation was observed. Altogether, our study provided information about the RNA molecules present inH. capsulatumEVs, and the differences in composition between the G186AR and G217B strains. In addition, we showed that the correlation between the most expressed transcripts in the cell and their presence in the EVs, reinforcing the idea that the RNAs were directed to the EVs by a regulated mechanism.ImportanceExtracellular vesicles (EVs) play important roles in cellular communication and pathogenesis. The RNA molecules in EVs have been implicated in a variety of processes. In pathogenic fungi, EV-associated RNA classes have recently been described; however, only a few studies describing the RNA in fungal EVs are available. An improved knowledge on EV-associated RNA will contribute to the understanding of their role during infection. In this study, we described the RNA content in EVs produced by two isolates ofHistoplasma capsulatum. Our results add this important pathogen to the current short list of fungal species with the ability to use EVs for the extracellular release of RNA.

mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Lysangela R. Alves ◽  
Roberta Peres da Silva ◽  
David A. Sanchez ◽  
Daniel Zamith-Miranda ◽  
Marcio L. Rodrigues ◽  
...  

ABSTRACT Eukaryotic cells, including fungi, release extracellular vesicles (EVs). These lipid bilayered compartments play essential roles in cellular communication and pathogenesis. EV composition is complex and includes proteins, glycans, pigments, and RNA. RNAs with putative roles in pathogenesis have been described in EVs produced by fungi. Here we describe the RNA content in EVs produced by the G186AR and G217B strains of Histoplasma capsulatum, an important human-pathogenic fungal pathogen. A total of 124 mRNAs were identified in both strains. In this set of RNA classes, 93 transcripts were enriched in EVs from the G217B strain, whereas 31 were enriched in EVs produced by the G186AR strain. This result suggests that there are important strain-specific properties in the mRNA composition of fungal EVs. We also identified short fragments (25 to 40 nucleotides in length) that were strain specific, with a greater number identified in EVs produced by the G217B strain. Remarkably, the most highly enriched processes were stress responses and translation. Half of these fragments aligned to the reverse strand of the transcript, suggesting the occurrence of microRNA (miRNA)-like molecules in fungal EVs. We also compared the transcriptome profiles of H. capsulatum with the RNA composition of EVs, and no correlation was observed. Taking the results together, our study provided information about the RNA molecules present in H. capsulatum EVs and about the differences in composition between the strains. In addition, we found no correlation between the most highly expressed transcripts in the cell and their presence in the EVs, reinforcing the idea that the RNAs were directed to the EVs by a regulated mechanism. IMPORTANCE Extracellular vesicles (EVs) play important roles in cellular communication and pathogenesis. The RNA molecules in EVs have been implicated in a variety of processes. EV-associated RNA classes have recently been described in pathogenic fungi; however, only a few reports of studies describing the RNAs in fungal EVs are available. Improved knowledge of EV-associated RNA will contribute to the understanding of their role during infection. In this study, we described the RNA content in EVs produced by two isolates of Histoplasma capsulatum. Our results add this important pathogen to the current short list of fungal species with the ability to use EVs for the extracellular release of RNA.


mSphere ◽  
2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Ludmila Matos Baltazar ◽  
Ernesto S. Nakayasu ◽  
Tiago J. P. Sobreira ◽  
Hyungwon Choi ◽  
Arturo Casadevall ◽  
...  

ABSTRACT Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has been no study reporting the impact of antibody binding to the fungal cell on extracellular vesicle release. In the present work, we observed that treatment of H. capsulatum cells with Hsp60-binding MAbs significantly changed the size and cargo of extracellular vesicles, as well as the enzymatic activity of certain virulence factors, such as laccase and phosphatase. Furthermore, this finding demonstrates that antibody binding can directly impact protein loading in vesicles and fungal metabolism. Hence, this work presents a new role for antibodies in the modification of fungal physiology. Histoplasma capsulatum produces extracellular vesicles containing virulence-associated molecules capable of modulating host machinery, benefiting the pathogen. Treatment of H. capsulatum cells with monoclonal antibodies (MAbs) can change the outcome of infection in mice. We evaluated the sizes, enzymatic contents, and proteomic profiles of the vesicles released by fungal cells treated with either protective MAb 6B7 (IgG1) or nonprotective MAb 7B6 (IgG2b), both of which bind H. capsulatum heat shock protein 60 (Hsp60). Our results showed that treatment with either MAb was associated with changes in size and vesicle loading. MAb treatments reduced vesicle phosphatase and catalase activities compared to those of vesicles from untreated controls. We identified 1,125 proteins in vesicles, and 250 of these manifested differences in abundance relative to that of proteins in vesicles isolated from yeast cells exposed to Hsp60-binding MAbs, indicating that surface binding of fungal cells by MAbs modified protein loading in the vesicles. The abundance of upregulated proteins in vesicles upon MAb 7B6 treatment was 44.8% of the protein quantities in vesicles from fungal cells treated with MAb 6B7. Analysis of orthologous proteins previously identified in vesicles from other fungi showed that different ascomycete fungi have similar proteins in their extracellular milieu, many of which are associated with virulence. Our results demonstrate that antibody binding can modulate fungal cell responses, resulting in differential loading of vesicles, which could alter fungal cell susceptibility to host defenses. This finding provides additional evidence that antibody binding modulates microbial physiology and suggests a new function for specific immunoglobulins through alterations of fungal secretion. IMPORTANCE Diverse fungal species release extracellular vesicles, indicating that this is a common pathway for the delivery of molecules to the extracellular space. However, there has been no study reporting the impact of antibody binding to the fungal cell on extracellular vesicle release. In the present work, we observed that treatment of H. capsulatum cells with Hsp60-binding MAbs significantly changed the size and cargo of extracellular vesicles, as well as the enzymatic activity of certain virulence factors, such as laccase and phosphatase. Furthermore, this finding demonstrates that antibody binding can directly impact protein loading in vesicles and fungal metabolism. Hence, this work presents a new role for antibodies in the modification of fungal physiology.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Flavia C. G. Reis ◽  
Beatriz S. Borges ◽  
Luísa J. Jozefowicz ◽  
Bianca A. G. Sena ◽  
Ane W. A. Garcia ◽  
...  

ABSTRACT Regular protocols for the isolation of fungal extracellular vesicles (EVs) are time-consuming, hard to reproduce, and produce low yields. In an attempt to improve the protocols used for EV isolation, we explored a model of vesicle production after growth of Cryptococcus gattii and Cryptococcus neoformans on solid media. Nanoparticle tracking analysis in combination with transmission electron microscopy revealed that C. gattii and C. neoformans produced EVs in solid media. The properties of cryptococcal vesicles varied according to the culture medium used and the EV-producing species. EV detection was reproduced with an acapsular mutant of C. neoformans, as well as with isolates of Candida albicans, Histoplasma capsulatum, and Saccharomyces cerevisiae. Cryptococcal EVs produced in solid media were biologically active and contained regular vesicular components, including the major polysaccharide glucuronoxylomannan (GXM) and RNA. Since the protocol had higher yields and was much faster than the regular methods used for the isolation of fungal EVs, we asked if it would be applicable to address fundamental questions related to cryptococcal secretion. On the basis that polysaccharide export in Cryptococcus requires highly organized membrane traffic culminating with EV release, we analyzed the participation of a putative scramblase (Aim25; CNBG_3981) in EV-mediated GXM export and capsule formation in C. gattii. EVs from a C. gattii aim25Δ strain differed from those obtained from wild-type (WT) cells in physical-chemical properties and cargo. In a model of surface coating of an acapsular cryptococcal strain with vesicular GXM, EVs obtained from the aim25Δ mutant were more efficiently used as a source of capsular polysaccharides. Lack of the Aim25 scramblase resulted in disorganized membranes and increased capsular dimensions. These results associate the description of a novel protocol for the isolation of fungal EVs with the identification of a previously unknown regulator of polysaccharide release. IMPORTANCE Extracellular vesicles (EVs) are fundamental components of the physiology of cells from all kingdoms. In pathogenic fungi, they participate in important mechanisms of transfer of antifungal resistance and virulence, as well as in immune stimulation and prion transmission. However, studies on the functions of fungal EVs are still limited by the lack of efficient methods for isolation of these compartments. In this study, we developed an alternative protocol for isolation of fungal EVs and demonstrated an application of this new methodology in the study of the physiology of the fungal pathogen Cryptococcus gattii. Our results describe a fast and reliable method for the study of fungal EVs and reveal the participation of scramblase, a phospholipid-translocating enzyme, in secretory processes of C. gattii.


mSphere ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Nora K. McNamara-Bordewick ◽  
Mia McKinstry ◽  
Jonathan W. Snow

ABSTRACT The majority of fungal species prefer the 12° to 30°C range, and relatively few species tolerate temperatures higher than 35°C. Our understanding of the mechanisms underpinning the ability of some species to grow at higher temperatures is incomplete. Nosema ceranae is an obligate intracellular fungal parasite that infects honey bees and can cause individual mortality and contribute to colony collapse. Despite a reduced genome, this species is strikingly thermotolerant, growing optimally at the colony temperature of 35°C. In characterizing the heat shock response (HSR) in N. ceranae, we found that this and other microsporidian species have lost the transcriptional regulator HSF and possess a reduced set of putative core HSF1-dependent HSR target genes. Despite these losses, N. ceranae demonstrates robust upregulation of the remaining HSR target genes after heat shock. In addition, thermal stress leads to alterations in genes involved in various metabolic pathways, ribosome biogenesis and translation, and DNA repair. These results provide important insight into the stress responses of microsporidia. Such a new understanding will allow new comparisons with other pathogenic fungi and potentially enable the discovery of novel treatment strategies for microsporidian infections affecting food production and human health. IMPORTANCE We do not fully understand why some fungal species are able to grow at temperatures approaching mammalian body temperature. Nosema ceranae, a microsporidium, is a type of fungal parasite that infects honey bees and grows optimally at the colony temperature of 35°C despite possessing cellular machinery for responding to heat stress that is notably simpler than that of other fungi. We find that N. ceranae demonstrates a robust and broad response to heat shock. These results provide important insight into the stress responses of this type of fungus, allow new comparisons with other pathogenic fungi, and potentially enable the discovery of novel treatment strategies for this type of fungus.


2021 ◽  
Author(s):  
Youmna S. Kfoury ◽  
Fei Ji ◽  
Michael Mazzola ◽  
David B. Sykes ◽  
Allison K. Scherer ◽  
...  

AbstractExtracellular vesicles transfer complex biologic material between cells, whose role in in-vivo organismal physiology is poorly defined. Here, we demonstrate that osteoblastic cells in the bone marrow elaborate extracellular vesicles that are taken up by hematopoietic progenitor cells in vivo. Genotoxic or infectious stress rapidly increased stromal-derived extracellular vesicle transfer to granulocyte-monocyte progenitors. Stimulating osteoblastic cells with parathyroid hormone or activating its receptor enhanced extracellular vesicle transfer, myeloid recovery post radiation and improved animal survival from Candida sepsis. The extracellular vesicles contained tiRNAs known to modulate protein translation. 5’-ti-Pro-CGG-1 was preferentially abundant in osteoblast-derived extracellular vesicles and when transferred to granulocyte macrophage progenitors, increased protein translation, cell proliferation and myeloid differentiation. Therefore, EV-mediated tiRNA transfer provides a stress modulated signaling axis distinct from conventional cytokine-driven stress responses.One sentence summaryStress regulated tiRNA transfer alters hematopoiesis


Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 765 ◽  
Author(s):  
Roberta Peres da Silva ◽  
Larissa G. V. Longo ◽  
Julia P. C. da Cunha ◽  
Tiago J. P. Sobreira ◽  
Marcio L. Rodrigues ◽  
...  

Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt RNA fractions contained in EVs isolated from culture supernatants of P. brasiliensis Pb18, Pb3, and P. lutzii Pb01. Shared mRNA sequences were related to protein modification, translation, and DNA metabolism/biogenesis, while those related to transport and oxidation-reduction were exclusive to Pb01. The presence of functional full-length mRNAs was validated by in vitro translation. Among small non-coding (nc)RNA, 15 were common to all samples; small nucleolar (sno)RNAs were enriched in P. brasiliensis EVs, whereas for P. lutzii there were similar proportions of snoRNA, rRNA, and tRNA. Putative exonic sRNAs were highly abundant in Pb18 EVs. We also found sRNA sequences bearing incomplete microRNA structures mapping to exons. RNA-seq data suggest that extracellular fractions containing Pb18 EVs can modulate the transcriptome of murine monocyte-derived dendritic cells in a transwell system. Considering that sRNA classes are involved in transcription/translation modulation, our general results may indicate that differences in virulence among fungal isolates can be related to their distinct EV-RNA content.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brenda Kischkel ◽  
Camila Boniche-Alfaro ◽  
Isabela de Godoy Menezes ◽  
Suelen Andreia Rossi ◽  
Claudia Blanes Angeli ◽  
...  

As there are more than 6 million human deaths due to mycoses each year, there is an urgent need to develop fungal vaccines. Moreover, given the similarities among pathogenic fungi, it may be possible to create a multi-fungi vaccine. In this study, we combined immunoproteomic and immunopeptidomic methods, for which we have adapted a technique based on co-immunoprecipitation (Co-IP) that made it possible to map Histoplasma capsulatum epitopes for the first time in a natural context using murine dendritic cells (DCs) and macrophages (Mφ). Although polysaccharide epitopes exist, this research focused on mapping protein epitopes as these are more immunogenic. We used different algorithms to screen proteins and peptides identified by two-dimensional electrophoresis (2-D) and Co-IP. Seventeen proteins were revealed by 2-D gels, and 45 and 24 peptides from distinct proteins were presented by DCs and Mφ, respectively. We then determined which epitopes were restricted to MHC-I and II from humans and mice and showed high promiscuity, but lacked identity with human proteins. The 4 most promising peptides were synthesized, and the peptides with and without incorporation into glucan particles induced CD4+ and CD8+ T cell proliferation and produced a Th1 and Th17 response marked by the secretion of high levels of IFN-γ, IL-17 and IL-2. These epitopes were from heat shock protein 60, enolase, and the ATP-dependent molecular chaperone HSC82, and they each have a high degree of identity with proteins expressed by other medically important pathogenic fungi. Thus, the epitopes described in this study have the potential for use in the development of vaccines that could result in cross-protection among fungal species.


2019 ◽  
Author(s):  
Flavia C. G. Reis ◽  
Beatriz S. Borges ◽  
Luísa J. Jozefowicz ◽  
Bianca A. G. Sena ◽  
Ane W. A. Garcia ◽  
...  

AbstractRegular protocols for the isolation of fungal extracellular vesicles (EVs) are time-consuming, hard to reproduce, and produce low yields. In an attempt to improve the protocols used for EV isolation, we explored a model of vesicle production after growth of Cryptococcus gattii and C. neoformans on solid media. Nanoparticle tracking analysis in combination with transmission electron microscopy revealed that C. gattii and C. neoformans produced EVs in solid media. These results were reproduced with an acapsular mutant of C. neoformans, as well as with isolates of Candida albicans, Histoplasma capsulatum, and Saccharomyces cerevisiae. Cryptococcal EVs produced in solid media were biologically active and contained regular vesicular components, including the major polysaccharide glucuronoxylomannan (GXM) and RNA. Since the protocol had higher yields and was much faster than the regular methods used for the isolation of fungal EVs, we asked if it would be applicable to address fundamental questions related to cryptococcal secretion. On the basis that polysaccharide export in Cryptococcus requires highly organized membrane traffic culminating with EV release, we analyzed the participation of a putative scramblase (Aim25, CNBG_3981) in EV-mediated GXM export and capsule formation in C. gattii. EVs from a C. gattii aim25Δ strain differed from those obtained from wild-type (WT) cells in physical-chemical properties and cargo. In a model of surface coating of an acapsular cryptococcal strain with vesicular GXM, EVs obtained from the aim25Δ mutant were more efficiently used as a source of capsular polysaccharides. Lack of the Aim25 scramblase resulted in disorganized membranes and increased capsular dimensions. These results associate the description of a novel protocol for the isolation of fungal EVs with the identification of a previously unknown regulator of polysaccharide release.IMPORTANCEExtracellular vesicles (EVs) are fundamental components of the physiology of cells from all kingdoms. In pathogenic fungi, they participate in important mechanisms of transfer of antifungal resistance and virulence, as well as in immune stimulation and prion transmission. However, studies on the functions of fungal EVs are still limited by the lack of efficient methods for isolation of these compartments. In this study, we developed an alternative protocol for isolation of fungal EVs and demonstrated an application of this new methodology in the study of the physiology of the fungal pathogen Cryptococcus gattii. Our results describe a fast and reliable method for the study of fungal EVs and reveal the participation of scramblase, a phospholipid translocating enzyme, in secretory processes of C. gattii.


2020 ◽  
Vol 21 (3) ◽  
pp. 245-264 ◽  
Author(s):  
Laura C. García-Carnero ◽  
José A. Martínez-Álvarez ◽  
Luis M. Salazar-García ◽  
Nancy E. Lozoya-Pérez ◽  
Sandra E. González-Hernández ◽  
...  

: By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.


2021 ◽  
Author(s):  
Shuwei Wang ◽  
Jiajia Wang ◽  
Tuoyu Ju ◽  
Kaige Qu ◽  
Fan Yang ◽  
...  

Extracellular Vesicles (EVs) secreted by cancer cells have a key role in the cancer microenvironment and progression. Previous studies have mainly focused on molecular functions, cellular components and biological processes...


Sign in / Sign up

Export Citation Format

Share Document