scholarly journals Acute inflammation is a predisposing factor for weight gain and insulin resistance

2019 ◽  
Author(s):  
Edson M. de Oliveira ◽  
Jacqueline C. Silva ◽  
Thais P. Ascar ◽  
Silvana Sandri ◽  
Alexandre F. Marchi ◽  
...  

ABSTRACTAimIntense endotoxaemia and infection are able to reduce appetite and induce a catabolic state, therefore leading to weight loss. However, it is underexplored its late effects on energy homeostasis, regulation of body weight and glucose metabolism. Here we addressed whether serial intense endotoxaemia, characterized by an acute phase response and weight loss, could be an aggravating or predisposing factor to diet-induced obesity (DIO) and associated metabolic impairments.MethodsMale Swiss Webster mice were submitted to 8 consecutive doses of lipopolysaccharide (LPS - 10 mg/kg), followed by 10 weeks in high-fat diet (HFD).ResultsAfter the end of the acute endotoxaemia period, mice under chow diet recovered their weight rapidly, within one-week recovery period, which remained similar to its control counterparts. However, acute endotoxaemia caused a long-lasting adipose tissue expression of the inflammatory markers TLR-4, CD14 and serum amyloid A (SAA) and, when challenged by a HFD, LPS-treated mice gained more weight, showed increased fat depots, leptin and insulin levels, and also impaired insulin sensitivity.ConclusionsLPS-treated mice showed a higher susceptibility to the harmful effects of a subsequent HFD. Conditions leading to intense and recurrent endotoxaemia, such as common childhood bacterial infections, may resound for a long time and aggravate the effects of a western diet. If confirmed in humans, infections should be considered an additional factor contributing to obesity and type 2 diabetes epidemics and additionally impose more rigorous dietary recommendations for patients in post-infection recovery.Bullet pointsIntense endotoxemia causes a long-lasting increase in the expression of inflammatory markers in adipose tissue.Intense endotoxemia is a predisposing factor to diet-induced obesity and insulin resistance.Infections may contribute to weight gain when associated to a western diet.


2019 ◽  
Author(s):  
Frederique Van de Velde ◽  
Margriet Ouwens ◽  
Arsene-Helene Batens ◽  
Samyah Shadid ◽  
Bruno Lapauw ◽  
...  


2019 ◽  
Vol 176 (20) ◽  
pp. 3983-4001 ◽  
Author(s):  
Shengnan Shen ◽  
Qiwen Liao ◽  
Tian Zhang ◽  
Ruile Pan ◽  
Ligen Lin


2019 ◽  
Vol 33 (5) ◽  
pp. 1394-1403 ◽  
Author(s):  
Rafael Calixto Bortolin ◽  
Amanda Rodrigues Vargas ◽  
Vitor Ramos ◽  
Juciano Gasparotto ◽  
Paloma Rodrigues Chaves ◽  
...  


2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.



2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Deanna L. Plubell ◽  
Alexandra M. Fenton ◽  
Phillip A. Wilmarth ◽  
Paige Bergstrom ◽  
Yuqi Zhao ◽  
...  


Endocrinology ◽  
2015 ◽  
Vol 156 (11) ◽  
pp. 4020-4032 ◽  
Author(s):  
Alli M. Nuotio-Antar ◽  
Naravat Poungvarin ◽  
Ming Li ◽  
Michael Schupp ◽  
Mahmoud Mohammad ◽  
...  

Carbohydrate response element binding protein (ChREBP) regulates cellular glucose and lipid homeostasis. Although ChREBP is highly expressed in many key metabolic tissues, the role of ChREBP in most of those tissues and the consequent effects on whole-body glucose and lipid metabolism are not well understood. Therefore, we generated a transgenic mouse that overexpresses a constitutively active ChREBP isoform under the control of the fatty acid binding protein 4-Cre-driven promoter (FaChOX). Weight gain was blunted in male, but not female, FaChOX mice when placed on either a normal chow diet or an obesogenic Western diet. Respiratory exchange ratios were increased in Western diet-fed FaChOX mice, indicating a shift in whole-body substrate use favoring carbohydrate metabolism. Western diet-fed FaChOX mice showed improved insulin sensitivity and glucose tolerance in comparison with controls. Hepatic triglyceride content was reduced in Western diet-fed FaChOX mice in comparison with controls, suggesting protection from fatty liver. Epididymal adipose tissue exhibited differential expression of genes involved in differentiation, browning, metabolism, lipid homeostasis, and inflammation between Western diet-fed FaChOX mice and controls. Our findings support a role for ChREBP in modulating adipocyte differentiation and adipose tissue metabolism and inflammation as well as consequent risks for obesity and insulin resistance.



2012 ◽  
Vol 167 (4) ◽  
pp. 569-578 ◽  
Author(s):  
Francisco J Ortega ◽  
Mónica Sabater ◽  
José M Moreno-Navarrete ◽  
Neus Pueyo ◽  
Patricia Botas ◽  
...  

ObjectiveIncreased circulating calprotectin has been reported in obese subjects but not in association with measures of insulin resistance and type 2 diabetes (T2D). The main aim of this study was to determine whether calprotectins in plasma and urine are associated with insulin resistance.DesignWe performed both cross-sectional and longitudinal (diet-induced weight loss) studies.MethodsCirculating calprotectin concentrations (ELISA), other inflammatory markers, homeostasis model assessment of insulin resistance (HOMA-IR), and parameters of glucose and lipid metabolism were evaluated in 298 subjects (185 with normal (NGT) and 62 with impaired (IGT) glucose tolerance and 51 T2D subjects). Calprotectin was also evaluated in urine samples from 71 participants (50 NGT and 21 subjects with IGT). Insulin sensitivity (SI, Minimal Model) was determined in a subset of 156 subjects, and the effects of weight loss were investigated in an independent cohort of obese subjects (n=19).ResultsCirculating calprotectin was significantly increased in IGT–T2D (independently of BMI) and positively associated with HOMA-IR, obesity measures, inflammatory markers, and parameters of glucose and lipid metabolism. Similar findings were reported for calprotectin concentrations in urine. In the subset of subjects, the association of calprotectin withSIwas independent of BMI and age. In fact,SItogether with C-reactive protein contributed to 27.4% of calprotectin variance after controlling for age and blood neutrophils count. Otherwise, weight loss led to decreased circulating calprotectin in parallel to fasting glucose and HOMA-IR.ConclusionThese findings suggest that circulating and urinary concentrations of calprotectin are linked to chronic low-grade inflammation and insulin resistance beyond obesity.



Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Chaoneng Wu ◽  
Andrei Maiseyeu ◽  
Jeffrey A Deiuliis ◽  
Jixin Zhong ◽  
Xiaoquan Rao ◽  
...  

Objective: Recent evidence suggests an important role for cAMP-dependent pathways in modulation of innate immune function. Phosphodiesterase 4 (PDE4) is widely expressed in innate immune cells such as macrophages/dendritic cells with potent anti-inflammatory effects on pharmacologic inhibition of the enzyme. We investigated the importance of PDE4 in diet-induced obesity (DIO) and hypothesized that PDE4 inhibition will improve insulin sensitivity and reduce inflammation. Methods and Results: PDE4 was upregulated in both visceral and subcutaneous (SubQ) white adipose tissue (WAT) in DIO mice (12 weeks of high-fat diet, HFD, 60% fat) compared to normal-chow diet (NCD) mice (↑4∼10-folds, p<0.01). The degree of expression was correlated with macrophage infiltration in stromal vascular fraction from WAT (CD11b + F4/80 + cells, r=0.56, p<0.05). Treatment with Roflumilast (3mg/kg/day), a high affinity inhibitor of PDE4 (IC 50 0.39 nM) versus vehicle control (n=6∼10 in each group) for 21 days concomitant with HFD, resulted in rapid and substantial weight loss (↓45.8% fat content), enhanced thermogenesis [(∼20% higher oxygen consumption and heat production, 0.7∼1.1°C higher core body temperature in a cold environment (4°C)], brown adipose reprogramming, improvement in insulin resistance (HOMA-IR ↓ from 0.69±0.04 to 0.44±0.01, p<0.01) and hepatic steatosis. These changes were paralleled by increased alternative macrophage activation (Altf), reduced inflammation in WAT [↑CD206 and CD301 by flow cytometry with ↓ TNF/IL-6 gene expression] and activation of thermogenic genes in brown adipose tissue. In-vitro treatment of mouse bone marrow-derived macrophages (BMDM) promoted Altf and increased expression of tyrosine hydroxylase (↑2.5 folds) and catecholamines secretion. Additional experiments with agents that augment/reduce intracellular cAMP/EPAC/AMPK revealed an essential role for this cascade in Altf activation and catecholamine release. Conclusions: PDE4 antagonism improves obese diabetic symptoms through convergent pathways involving Altf activation and enhancing thermogenesis via cAMP dependent modulation of macrophage catecholamine release.



Metabolism ◽  
2020 ◽  
Vol 106 ◽  
pp. 154194 ◽  
Author(s):  
Joseph Skurski ◽  
Christie M. Penniman ◽  
Ramasatyaveni Geesala ◽  
Garima Dixit ◽  
Priyanjali Pulipati ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document