scholarly journals DNA-scaffolded biomaterials enable modular and tunable control of cell-based cancer immunotherapies

2019 ◽  
Author(s):  
Xiao Huang ◽  
Jasper Z. Williams ◽  
Ryan Chang ◽  
Zhongbo Li ◽  
Eric Gai ◽  
...  

Advanced biomaterials provide versatile ways to spatially and temporally control immune cell activity, potentially enhancing their therapeutic potency and safety. Precise cell modulation demands multi-modal display of functional proteins with controlled densities on biomaterials. Here, we develop an artificial immune cell engager (AICE) platform – biodegradable particles onto which multiple proteins are densely loaded with ratiometric control via short nucleic acid tethers. We demonstrate the impact of AICE with varying ratios of anti-CD3 and anti-CD28 antibodies onex vivoexpansion of human primary T cells. We also show that AICE can be used to control the activity of engineered T cellsin vivo. AICE injected intratumorally can provide a local priming signal for systemically administered AND-gate chimeric antigen receptor T cells, driving local tumor clearance while sparing uninjected tumors that model potentially cross-reactive healthy tissues. This modularly functionalized biomaterial thus provides a flexible platform to achieve sophisticated control over cell-based immunotherapies.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 1959-1959
Author(s):  
Jeong A Park ◽  
Hong fen Guo ◽  
Hong Xu ◽  
Nai-Kong V. Cheung

Background Ex Vivo Armed T-cells (EVAT) carrying zeptomoles (10-21M) of T-cell engaging GD2-bispecific antibody (GD2-EVAT) or HER2-bispecific antibodies (HER2-EVAT) have potent anti-tumor activity against GD2(+) and/or HER2(+) solid tumors. Strategies to further optimize this approach are highly relevant. PD-1 is a key immune checkpoint receptor expressed mainly by activated T-cells and mediates immune suppression by binding to its ligands PD-L1 or PD-L2. Upregulation of PD-L1 has been found in many cancers including osteosarcoma and associated with aggressive disease and poor outcome. While the use of immune checkpoint inhibitors (ICIs) seems logical, the ideal timing when combined with T-cell engaging bispecific antibody (T-BsAb) or EVAT has yet to be defined. Here, we described the effects of anti-PD-1 or anti-PD-L1 antibodies on GD2-EVAT or HER2-EVAT therapy and explored the impact of its timing in the treatment of osteosarcoma which is GD2(+), HER2(+) and PD-L1(+). Methods GD2-BsAb and HER-BsAb were built using the IgG(L)-scFv format (Can Immunol Res, 3:266, 2015, Oncoimmunology, PMID:28405494). T-cells from healthy volunteer donors were isolated, and cultured ex vivo in the presence of CD3/CD28 beads plus 30 IU/mL of interleukin 2 (IL-2). Between day 7 and day 14, activated T-cells (ATCs) were harvested and armed for 20 minutes at room temperature with GD2-BsAb or HER2-BsAb. In vivo anti-tumor activity against GD2(+), HER2(+), and PD-L1(+) osteosarcoma cell line xenografts was tested in BALB-Rag2-/-IL-2R-γc-KO mice. Anti-human PD-1 antibody (pembrolizumab, anti-PD-1) or anti-human PD-L1 antibody (atezolizumab, anti-PD-L1) were tested for synergy with GD2-EVAT or HER2-EVAT therapy. Results The PD-1 expression increased among T-cells that circulated in the blood, that infiltrated the spleen or the tumor after EVAT therapy. While anti-PD-L1 combination therapy with GD2-EVAT or HER2-EVAT improved anti-tumor response against osteosarcoma (P=0.0123 and P=0.0004), anti-PD-1 did not (all P>0.05). The addition of anti-PD-L1 significantly increased T-cell survival in blood and T-cell infiltration of tumor when compared to GD2-EVAT or HER2-EVAT alone (all P<0.0001). Treatment of GD2-EVAT or anti-PD-L1 plus GD2-EVAT downregulated GD2 expression on tumors, but anti-PD-1 plus GD2-EVAT did not. For the next step we tested the impact of different combination schedules of ICIs on GD2-EVAT therapy. Concurrent anti-PD-1 (6 doses along with GD2-EVAT therapy) interfered with GD2-EVAT, while sequential anti-PD-1 (6 doses after GD2-EVAT) did not make a significant effect (P>0.05). On the other hand, while the concurrent use of anti-PD-L1 did not show benefit on GD2-EVAT, sequentially administered anti-PD-L1 produced a significant improvement in tumor control when compared to anti-PD-L1 or GD2-EVAT alone (P=0.002 and P=0.018). When anti-PD-L1 treatment was extended (12 doses after GD2-EVAT), the anti-tumor effect was most pronounced compared to GD2-EVAT alone (P <0.0001), which translated into improved survival (P=0.0057). These in vivo anti-tumor responses were associated with increased CD8(+) tumor infiltrating lymphocytes (TILs) of tumor. Conclusion In the arming platform, large numbers of target-specific T-cells can be generated, and this EVAT therapy is a highly effective cellular treatment with high potency in preclinical models. In addition, the advantage of ex vivo cytokine release following T-cell arming and activation could reduce or avoid life threatening cytokine storm if such activation was to proceed in vivo. Adoptive T-cell therapy induced immune response upregulates the inhibitory immune checkpoint PD-1/PD-L1 pathway, and combination treatment with anti-PD-L1 antibody, especially when combined as sequential therapy and continuously treated, significantly improved anti-tumor effect of EVAT, partly through increase in CD8(+) TILs infiltration. Disclosures Xu: MSK: Other: co-inventors in patents on GD2 bispecific antibody and HER2 bispecific antibody. Cheung:Ymabs: Patents & Royalties, Research Funding.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
N. N. Parayath ◽  
S. B. Stephan ◽  
A. L. Koehne ◽  
P. S. Nelson ◽  
M. T. Stephan

AbstractEngineering chimeric antigen receptors (CAR) or T cell receptors (TCR) helps create disease-specific T cells for targeted therapy, but the cost and rigor associated with manufacturing engineered T cells ex vivo can be prohibitive, so programing T cells in vivo may be a viable alternative. Here we report an injectable nanocarrier that delivers in vitro-transcribed (IVT) CAR or TCR mRNA for transiently reprograming of circulating T cells to recognize disease-relevant antigens. In mouse models of human leukemia, prostate cancer and hepatitis B-induced hepatocellular carcinoma, repeated infusions of these polymer nanocarriers induce sufficient host T cells expressing tumor-specific CARs or virus-specific TCRs to cause disease regression at levels similar to bolus infusions of ex vivo engineered lymphocytes. Given their ease of manufacturing, distribution and administration, these nanocarriers, and the associated platforms, could become a therapeutic for a wide range of diseases.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3106-3106
Author(s):  
Bruno Nervi ◽  
Michael P. Rettig ◽  
Julie K. Ritchey ◽  
Gerhard Bauer ◽  
Jon Walker ◽  
...  

Abstract GvHD remains a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation and donor lymphocyte infusion. The human GvHD pathophysiology includes recipient tissue destruction and proinflammatory cytokine production associated with the conditioning regimen; donor T cells become allo-activated, proliferate, and mediate tissue injury in various organs, including the liver, skin, and gut. Modern therapeutic strategies to control GvHD while maintaining the beneficial graft-versus-leukemia effects require ex vivo T cell stimulation and expansion. Multiple studies have demonstrated that these ex vivo expanded T cells exhibit decreased survival and function in vivo, including reduced alloreactivity and GvHD potential. Unfortunately no in vivo models exist to consistently examine the impact of ex vivo manipulation of human T cells (HuT) on T cell function. Naive HuT were compared to HuT activated using CD3/28 beads (XcyteTMDynabeads) with 50 U/ml IL-2 for 4 days (Act). We initially evaluated the HuT engraftment and GvHD potential of naive and Act in RAG2γ null mice (n=22) conditioned with clodronate liposomes on day −1 and 350cGy on day 0, as previously described by others. We injected 107 and 1.5x107 naive or Act HuT intravenously (iv). All mice exhibited low HuT engraftment and no lethal GvHD. NOD SCIDβ 2M null mice (β 2M) were next conditioned with 250cGy on day −1 (n=34), or 300cGy on day 0 (n=21). 107 naive vs Act HuT were injected retroorbitaly (ro). Lower HuT doses or iv injection resulted in no expansion or GvHD. Engraftment of HuT in peripheral blood of recipient mice was evaluated weekly by FACS and euthanasia was performed if mice lost &gt; 20% body weight. 60% of the mice conditioned with 250cGy that received naive HuT developed lethal GvHD, in comparison to 75% of mice that received 300cGy and nave HuT, and 100% of mice that received 300cGy and Act HuT. Table 1 250cGy 300cGy Naive (n=34) Naive (n=8) Activated (n=13) *p&lt;0.02 PB engraftment (%HuT) 20%±15 33%±21 59%±19 Lethal GvHD 60% 75% 100% All mice receiving 300cGy had well preserved CD4/CD8 ratios (1–1.5). Tissue infiltration was greatest in mice that had received 300cGy and Act HuT (spleen, liver, lung, kidney: 50–70%). Of interest, serum levels of hu IFNγ dramatically increased over time in all mice who went on to develop lethal GvHD (day 3=270 ug/ml and day 15=36,000 ug/ml) compared to mice that did not develop lethal GvHD (day 10=40 ug/ml and day 17=1,020 ug/ml)(p&lt;0.05). Interestingly, the up-regulation of the activation markers CD25 and CD30 in HuT, and IFNγ production predicted lethal GvHD in β 2M null mice. In summary, we developed a xenogeneic model of lethal GvHD where naive or ex vivo Act HuT injected ro in sublethaly irradiated β 2M not only engraft, expand in vivo, but also infiltrate and damage different mouse target organs. HuT are allo-activated against mouse antigens and damage the target tissues, sharing the major characteristics of human GvHD and causing the death of mice. This model will allow us to study the effects of specific ex vivo T cell manipulation including transduction, selection, expansion, and the depletion or addition of various T cells and other cellular subsets on the outcome of GvHD, to determine improved therapeutic interventions.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3165-3165
Author(s):  
Vadim Deyev ◽  
Melinda Roskos ◽  
Robert B. Levy ◽  
Eckhard R. Podack

Abstract TNFR25 (“DR3”) is a member of the TNF receptor family that is expressed by activated CD4+ and CD8+ T cells. To determine if activated CD4+CD25+ T cells also expressed this TNFR family molecule, B6 CD4+CD25+ T cells were stimulated with anti-CD3/CD28 coated beads (kind gift of Dr. B. Blazar, U. Minn.) and expanded for 3–4 days. TNFR25 expression was readily detected on CD4+CD25+ FoxP3+ T cells. Since other members of the TNF receptor family (GITR, OX40, 4–1BB) are known to influence T regulatory cell function, we investigated whether TNFR25 signaling can regulate CD4+CD25+ T cell activity. TNFR25 triggering in B6-wt T regulatory CD4+CD25+ cells with the recombinant TNFR25 ligand TL1A or agonistic anti-TNFR25 antibody (4C12) resulted in reduction of their ability to suppress anti-CD3 induced ex-vivo proliferation of CD4+CD25− cells. 4C12 mediated TNFR25 signaling also reduced B6-wt Treg mediated inhibition of peptide induced proliferation of OVA-specific B6 CD8+ (OT-I) cells. To further investigate a role for TNFR25 in Treg cell regulation, TNFR25 (full length) transgenic mice were generated and bred onto the BL/6 background. CD4+CD25+ cells from these TNFR25 tg mice were found to possess diminished T regulatory activity in vitro as determined by their diminished inability to regulate proliferation by B6-wt CD4+ and OT-I CD8+ T cells. To assess their in vivo regulatory activity, B6-wt and B6 TNFR25 tg Treg cells were examined for their ability to inhibit graft vs. host disease (GVHD) following allogeneic MHC class I/II mismatched BMT. In contrast to B6-wt Treg cells, TNFR25 tg Treg cells exhibited significantly diminished ability to regulate the onset of GVHD in vivo as assessed by weight loss and clinical symptoms. Using agonistic antibody, stimulation of TNFR25 on transgenic Treg cells was also found to effectively remove the ex-vivo regulatory activity expressed by this population. To exclude any possible direct co-stimulatory effects of 4C12 antibody on the responding proliferating cells, CD4+CD25−T cells from TNFR25 dominant negative transgenic mice were employed. 4C12 mab again abolished Treg cell inhibitory activity. The effect of TNFR25 agonists on T reg cell activity in vivo is being further investigated in both mouse models of GVHD and IBD diseases. Initial observations administering 4C12 post-allogeneic BMT together with B6-wt Treg cells indicate a reduction in their ability to regulate GVHD. In total, these studies identify TNFR25 as a new potential target for augmenting CD4+ and CD8+ responses by concomitant direct co-stimulation of effecter cells and inhibition of T regulatory cell function.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 450-450
Author(s):  
Rozemarijn S. van Rijn ◽  
Elles R. Simonetti ◽  
Gert Storm ◽  
Mark Bonyhadi ◽  
Anton Hagenbeek ◽  
...  

Abstract T cells retrovirally modified to express therapeutic genes encoding cytokines, exogenous TCRs or suicide molecules represent a novel class of immune therapeutics of great potency. However, recent clinical trials using retrovirally-modified T cells have indicated that T cells exhibit a diminished reactivity upon ex vivo manipulation. In addition, virus-specific memory T cells seem to be lost during gene transfer. In a BNML rat model we have shown that the culture procedure is one of the critical parameters. To preserve T cell reactivity, reliable models are required which permit readout of human T cell activity. We recently developed a huPBMC-RAG2−/−γc−/− mouse model for xenogeneic graft-versus-host disease (xGVHD), in which iv injection of 15 x 106 human T cells into RAG2−/−γc−/− mice consistently leads to high level engraftment and lethal xGVHD within 3 weeks in 80% of mice (van Rijn et al, Blood 2003). We have now used this model to analyze in vivo functionality of human T cells following different ex vivo culture procedures. For this, we cultured human T cells for 7 days with either of the two currently available clinically applicable stimulation conditions: 1) via CD3 and 2) via CD3/CD28. In addition, we included CD3/CD28/4-1BB stimulation to explore the effect of extensive costimulation. Mice were injected with escalating doses T cells. HuCD45+ cells in peripheral blood were measured by FACS. Lethal xGVHD occurred at only 6 times (90.106) the dose of fresh cells for CD3-stimulated T cells and 3 times for CD3/28- or CD3/28/4-1BB-stimulated cells. About 20% of surviving mice developed chronic xGVHD, independent of culture method. While lethal xGVHD was always associated with very high levels of engraftment (up to 95%) engraftment levels in chronic mice ranged from 1–75%. To compare the impact of the different culture conditions on in vivo T cell function, we analyzed engraftment potential. The fraction of huCD45+ cells was plotted against the time and the areas under the curves were compared. Based on a total of 68 mice, statistical analysis showed a 2-fold improvement of engraftment potential for C28-costimulated human T cells compared to CD3-stimulated cells (P&lt;0.0001). Additional ligation of 4-1BB did not increase engraftment potential. In addition, different T cell subsets (naïve, memory, effector) were monitored based on the combined expression of CD45RA, CD27 and CCR7. For all primary T cells and variably cultured T cells, a strikingly similar pattern was observed in vivo. After 3 weeks mainly effector and memory effector T cells (both CD4+ and CD8+) could be detected, suggesting a (xeno-)antigen-driven survival and expansion. This was a very consistent observation independent of donor, culture condition, engraftment level or severity of disease. In conclusion, in vitro costimulation preserves in vivo functionality of human T cells and should therefore be included in future clinical protocols for ex vivo manipulation of T cells. These data show the feasibility to use the huPBMC-RAG2−/−γc−/− model for in vivo evaluation of in vitro effects on human T cells. This model is the most sensitive to date for in vivo evaluation of human T cells and will be a promising new tool for the study of human T cells in, for instance, autoimmune disease, cancer and infectious diseases like AIDS.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4883-4883
Author(s):  
Helga Schmetzer ◽  
Christine Grabrucker ◽  
Anja Liepert ◽  
Andreas Kremser ◽  
Julia Loibl ◽  
...  

Abstract The presentation of leukemic antigens can be improved by in vitro conversion of leukemic cells in leukemia-derived DC (DCleu), thereby forming a platform for the generation of leukemia-specific cytotoxic lymphocytes (CTL). DC/ DCleu can be quantified by combination of suitable blast and DC-antigens (Schmetzer 2007). Now we want to enlight the role of the quality of DC/ DCleu and (DC-trained) T-cells to mediate leukemia-cytotoxic reactions ex vivo or to predict or correlate the clinical response to a DC/DLI-based immunotherapy in vivo. Methods: DC were generated with the best of 3 DC-generating methods(‘MCM-mimic’, Lee 2003;’Ca-Ionophore’, Houtenbos 2003; ‘Picibanil’, Sato 2003; Kufner S. 2005 I-III) and used to train T-cells in a ‘Mixed lymphocyte culture’ (MLC) for 10 days in the presence of IL-2 and restimulated with patient-derived DC every 3 days. Co-expression of T-cell-antigens on T-cells was measured before and after MLC. The antileukemic cytotoxic activity of DC-trained (or blast trained or untrained) T-cells against naïve blasts was quantified. We could show, that DC can be generated in every case of AML. In 65% of the cases T-cells gained a leukaemia-lytic activity after 24h training with DC, in 35% an increase of blasts was seen. The T-cell training efficacy with DC was superior to a blast training given rise to specific leukaemia-cytotoxic cells. A comparison of cases with a gain of lytic T-cell activity (n=11)with those without a lytic activity (n=6) showed 78 vs 51% DCleu, 55 vs 34% mature and 32 vs 18% migratory DC and 50vs40% proliferating T-cells, 53 vs 46% memory T-cells, 68vs56% CD4 and 38 vs 60% CD8 pos T-cells. Moreover we could evaluate cut-off values: 90% of DC-trained T-cells could gain a lytic activity if > 65% DCleu were in the MLR. In AML-patients who had presented with a relapse after SCT we could demonstrate a better ex vivo convertibility of blasts to DCleu if patients had successfully responded to a GM-CSF/DLI-based therapy of their relapse after SCT compared to cases with no response (72 vs 36% blasts convertible to DCleu; 44 vs 29% generable DC). Summary: The generation of DC/DCleu is possible in every AML/MDS-patient. Ex vivo convertibility of blasts to DCleu could predict a clinical response to a GM-CSF/DLI-based therapy or indirectly prove, that GM-CSF in vivo could contribute to produce DC/DCleu in vivo. A successful DC-training of T-cells is associated with high matureDC/ DCleu counts and high rates of proliferating, CD4 and Memory-T-cells. The lytic activity of DC-trained T-cells is predictable by quantities of DCleu generable in individual cases. So the generability of DC/DCleu and of DC/MNC-trained T-cells could contribute to predict the clinical course of the disease and could help to create specific anti-leukemic T-cells for immunotherapy of AML.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. TPS7132-TPS7132 ◽  
Author(s):  
David L. Porter ◽  
Noelle V. Frey ◽  
Alison W. Loren ◽  
Bruce Levine ◽  
Michael Kalos ◽  
...  

TPS7132 Background: The poor prognosis and lack of effective treatment options for patients with r/r CLL highlight the need for novel therapies in this setting. CD19 is a promising anticancer target because it is broadly expressed on normal and malignant B cells through several stages of maturation but absent on pluripotent stem cells. CART-19 (CTL019) therapy involves adoptive transfer of autologous T cells genetically modified via lentiviral transduction to express chimeric antigen receptors (CAR) designed to target CD19+ cells. CART-19 cells express a CD19 antigen recognition domain combined with intracellular signaling domains, CD137 (4-1BB) and CD3-zeta, which mediate cytolytic T-cell activity. In patients with r/r CLL, CART-19 therapy showed potent antileukemic activity with long-term persistence of transduced cells at doses from 1.4 × 107 to 1.1 × 109 CART-19 cells. As of August 2012, 3 of 8 evaluable CLL patients achieved CR (two > 24 months and one > 5 months) and remain in CR with detectable CART-19 cells. Two patients had PR lasting 3 and 5 months, and 3 patients did not respond (Porter et al. NEJM. 2011; Kalos et al. Sci Transl Med. 2011; Porter et al. ASH 2012). Here, we describe a study to determine the optimal dose of CART-19 cells (NCT01747486). Methods: Adults with relapsed or persistent CLL or SLL after ≥ 2 previous therapies will undergo leukapheresis to obtain T cells, which will be stimulated, expanded, and lentivirus transduced ex vivo to express the CD19/4-1BB/CD3-zeta CAR. Patients will undergo lymphodepletion chemotherapy prior to infusion of CART-19 cells. In stage I of the II-stage trial, 30 patients will be randomized 1:1 and receive either 1-5 × 108 or 1-5 × 107 CART-19 T cells. The optimal dose in stage I will be selected based on clinical responses, feasibility, and tolerability. In stage II, 8 additional patients will be enrolled into the selected dose cohort. Study objectives are to determine the efficacy (CR rate within 3 months) and safety (CTCAE v 4.0) of each dose, in vivo CART-19 expansion, and manufacturing feasibility. Three patients have been enrolled as of January 2013. Clinical trial information: NCT01747486.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1305 ◽  
Author(s):  
Mahboubeh Yazdanifar ◽  
Giulia Barbarito ◽  
Alice Bertaina ◽  
Irma Airoldi

γδ T cells have recently gained considerable attention as an attractive tool for cancer adoptive immunotherapy due to their potent anti-tumor activity and unique role in immunosurveillance. The remarkable success of engineered T cells for the treatment of hematological malignancies has revolutionized the field of adoptive cell immunotherapy. Accordingly, major efforts are underway to translate this exciting technology to the treatment of solid tumors and the development of allogeneic therapies. The unique features of γδ T cells, including their major histocompatibility complex (MHC)-independent anti-cancer activity, tissue tropism, and multivalent response against a broad spectrum of the tumors, render them ideal for designing universal ‘third-party’ cell products, with the potential to overcome the challenges of allogeneic cell therapy. In this review, we describe the crucial role of γδ T cells in anti-tumor immunosurveillance and we summarize the different approaches used for the ex vivo and in vivo expansion of γδ T cells suitable for the development of novel strategies for cancer therapy. We further discuss the different transduction strategies aiming at redirecting or improving the function of γδ T cells, as well as, the considerations for the clinical applications.


Author(s):  
Neha N. Parayath ◽  
Matthias T. Stephan

Gene therapy makes it possible to engineer chimeric antigen receptors (CARs) to create T cells that target specific diseases. However, current approaches require elaborate and expensive protocols to manufacture engineered T cells ex vivo, putting this therapy beyond the reach of many patients who might benefit. A solution could be to program T cells in vivo. Here, we evaluate the clinical need for in situ CAR T cell programming, compare competing technologies, review current progress, and provide a perspective on the long-term impact of this emerging and rapidly flourishing biotechnology field. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Anne Helfen ◽  
Annika Schnepel ◽  
Jan Rieß ◽  
Miriam Stölting ◽  
Mirjam Gerwing ◽  
...  

(1) Background: The prognosis of cancer is dependent on immune cells in the tumor microenvironment (TME). The protein S100A9 is an essential regulator of the TME, associated with poor prognosis. In this study, we evaluated early therapy effects on the TME in syngeneic murine breast cancer via S100A9-specific in vivo imaging. (2) Methods: Murine 4T1 cells were implanted orthotopically in female BALB/c mice (n = 59). Tumor size-adapted fluorescence imaging was performed before and 5 days after chemo- (Doxorubicin, n = 20), anti-angiogenic therapy (Bevacizumab, n = 20), or placebo (NaCl, n = 19). Imaging results were validated ex vivo (immunohistochemistry, flow cytometry). (3) Results: While tumor growth revealed no differences (p = 0.48), fluorescence intensities (FI) for S100A9 in Bevacizumab-treated tumors were significantly lower as compared to Doxorubicin (2.60 vs. 15.65 AU, p < 0.0001). FI for Doxorubicin were significantly higher compared to placebo (8.95 AU, p = 0.01). Flow cytometry revealed shifts in monocytic and T-cell cell infiltrates under therapy, correlating with imaging. (4) Conclusions: S100A9-specific imaging enables early detection of therapy effects visualizing immune cell activity in the TME, even before clinically detectable changes in tumor size. Therefore, it may serve as a non-invasive imaging biomarker for early therapy effects.


Sign in / Sign up

Export Citation Format

Share Document