scholarly journals In Situ Programming of CAR T Cells

Author(s):  
Neha N. Parayath ◽  
Matthias T. Stephan

Gene therapy makes it possible to engineer chimeric antigen receptors (CARs) to create T cells that target specific diseases. However, current approaches require elaborate and expensive protocols to manufacture engineered T cells ex vivo, putting this therapy beyond the reach of many patients who might benefit. A solution could be to program T cells in vivo. Here, we evaluate the clinical need for in situ CAR T cell programming, compare competing technologies, review current progress, and provide a perspective on the long-term impact of this emerging and rapidly flourishing biotechnology field. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
N. N. Parayath ◽  
S. B. Stephan ◽  
A. L. Koehne ◽  
P. S. Nelson ◽  
M. T. Stephan

AbstractEngineering chimeric antigen receptors (CAR) or T cell receptors (TCR) helps create disease-specific T cells for targeted therapy, but the cost and rigor associated with manufacturing engineered T cells ex vivo can be prohibitive, so programing T cells in vivo may be a viable alternative. Here we report an injectable nanocarrier that delivers in vitro-transcribed (IVT) CAR or TCR mRNA for transiently reprograming of circulating T cells to recognize disease-relevant antigens. In mouse models of human leukemia, prostate cancer and hepatitis B-induced hepatocellular carcinoma, repeated infusions of these polymer nanocarriers induce sufficient host T cells expressing tumor-specific CARs or virus-specific TCRs to cause disease regression at levels similar to bolus infusions of ex vivo engineered lymphocytes. Given their ease of manufacturing, distribution and administration, these nanocarriers, and the associated platforms, could become a therapeutic for a wide range of diseases.


2020 ◽  
Vol 20 ◽  
Author(s):  
Suman K Ray ◽  
Yamini Meshram ◽  
Sukhes Mukherjee

: Cancer immunotherapy endeavours in harnessing delicate strength and specificity of immune system for therapy of different malignancies including colorectal carcinoma. The recent challenge for cancer immunotherapy is to practice and develop molecular immunology tools to create tactics that efficiently and securely boost antitumor reactions. After several attempts of deceptive outcomes, the wave has lastly altered and immunotherapy has become a clinically confirmed treatment for several cancers. Immunotherapeutic methods include administration of antibodies or modified proteins that either block cellular activity or co-stimulate cells through immune control pathways, cancer vaccines, oncolytic bacteria, ex vivo activated adoptive transfer of T cells and natural killer cells. Engineered T cells are used to produce a chimeric antigen receptor (CAR) to treat different malignancies including colorectal carcinoma in a recent decade. Despite considerable early clinical success, CAR-T therapies are associated with some side effects and sometimes display minimal efficacy. It gives special emphasis on the latest clinical evidence with CAR-T technology and also other related immunotherapeutic methods with promising performance, and highlighted how this therapy can affect therapeutic outcome and next upsurge as a key clinical aspect of colorectal carcinoma. In this review we recapitulate the current developments produced to improve the efficacy and specificity of CAR-T therapies in colon cancer.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Andrea Schmidts ◽  
Marc Wehrli ◽  
Marcela V. Maus

Adoptive transfer of T cells modified with chimeric antigen receptors (CAR-T cells) has changed the therapeutic landscape of hematological malignancies, particularly for acute lymphoblastic leukemia and large B cell lymphoma, where two different CAR-T products are now considered standard of care. Furthermore, intense research efforts are under way to expand the clinical application of CAR-T cell therapy for the benefit of patients suffering from other types of cancers. Nevertheless, CAR-T cell treatment is associated with toxicities such as cytokine release syndrome, which can range in severity from mild flu-like symptoms to life-threatening vasodilatory shock, and a neurological syndrome termed ICANS (immune effector cell–associated neurotoxicity syndrome), which can also range in severity from a temporary cognitive deficit lasting only a few hours to lethal cerebral edema. In this review, we provide an in-depth discussion of different types of CAR-T cell–associated toxicities, including an overview of clinical presentation and grading, pathophysiology, and treatment options. We also address future perspectives and opportunities, with a special focus on hematological malignancies. Expected final online publication date for the Annual Review of Medicine, Volume 72 is January 27, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2002 ◽  
Vol 195 (10) ◽  
pp. 1289-1302 ◽  
Author(s):  
Tomonori Iyoda ◽  
Susumu Shimoyama ◽  
Kang Liu ◽  
Yoshiki Omatsu ◽  
Yuji Akiyama ◽  
...  

Dendritic cells (DCs) are able in tissue culture to phagocytose and present antigens derived from infected, malignant, and allogeneic cells. Here we show directly that DCs in situ take up these types of cells after fluorescent labeling with carboxyfluorescein succinimidyl ester (CFSE) and injection into mice. The injected cells include syngeneic splenocytes and tumor cell lines, induced to undergo apoptosis ex vivo by exposure to osmotic shock, and allogeneic B cells killed by NK cells in situ. The CFSE-labeled cells in each case are actively endocytosed by DCs in vivo, but only the CD8+ subset. After uptake, all of the phagocytic CD8+ DCs can form major histocompatibility complex class II–peptide complexes, as detected with a monoclonal antibody specific for these complexes. The CD8+ DCs also selectively present cell-associated antigens to both CD4+ and CD8+ T cells. Similar events take place with cultured DCs; CD8+ DCs again selectively take up and present dying cells. In contrast, both CD8+ and CD8− DCs phagocytose latex particles in culture, and both DC subsets present soluble ovalbumin captured in vivo. Therefore CD8+ DCs are specialized to capture dying cells, and this helps to explain their selective ability to cross present cellular antigens to both CD4+ and CD8+ T cells.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3721-3721
Author(s):  
Yinmeng Yang ◽  
Christopher Daniel Chien ◽  
Elad Jacoby ◽  
Haiying Qin ◽  
Waleed Haso ◽  
...  

Abstract Adoptive therapy using T cells genetically engineered to express chimeric antigen receptors (CAR) has proven extremely effective against acute lymphoblastic leukemia (ALL) in clinical trials with the use of anti-CD19 CAR T cells. Most CAR T cell protocols use autologous T cells, which are then activated, transduced with the anti-CD19 CAR, and expanded ex-vivo before infusion back into the patient. This approach minimizes the risk of graft-versus-host disease (GVHD) even in allogeneic transplant recipients, due to tolerization of the donor T cell repertoire in the recipient. However, many patients have heavy disease burden and lymphopenia due to previous treatments, which makes the isolation of healthy T cells difficult. Thus, centers are exploring the potential of allogeneic T cell donors and the possibility of universal T cell donors for CAR-based therapy including the use of virus-specific T cells. In these cases, in addition to the chimeric receptor specificity, the transduced T cell population will also have reactivity against target antigens through the endogenous TCR. However, little is known about the impact of signaling of the endogenous TCR on CAR T cell activity, particularly in vivo. To test this, we used a syngeneic transplantable ALL murine model, E2aPBx, in which CD19 CAR T cells can effectively eradicate ALL. CD4 (Marilyn) and CD8 (Matahari) T cells from syngeneic HY-TCR transgenic donors specific for the minor histocompatibility male antigen, HY, were used as CAR T cell donors to control for endogenous TCR reactivity. Splenic T cells isolated from Matahari, Marilyn, or B6 mice were activated ex-vivo using anti-CD3/anti-CD28 beads, with the addition of IL2 and IL7. T cells were transduced with a retroviral vector expressing a murine CAR composed of anti-CD19 scfv/CD28/CD3ζ on days two and three. CAR T cells are evaluated in vitro by CD107a degranulation assay and INF gamma ELISA. In response to HY peptide alone or HY+CD19- line M39M, transduced CD8 HY (Matahari) cells produced IFN gamma and expressed CD107a whereas transduced CD4 HY (Marilyn) cells only produced IFN gamma. Interestingly, in response to CD19+HY- ALL, both Matahari and Marilyn expressed CD107a and produced IFN gamma indicating that CD4 T cells can acquire CD8-like lytic activity when stimulated through a CAR receptor. When CD19 CAR transduced Marilyns and Mataharis were stimulated in the presence of HY and CD19, CD8 Mataharis had an attenuated effect against CD19, suggesting that the presence of antigen activated TCR adversely affects the potency of the CAR receptor. Efficacy of the HY and polyclonal CAR T cells were next tested in-vivo in male and female B6 mice. Mice were given 1E6 E2aPBx ALL leukemia cells on day 1, and received 500 rads sub-lethal total body irradiation on day 4 as a lymphodepleting regimen. On day 5, mice were given a low (1E5) or high (5E6) dose of CAR T cells. There was a statistically significant (p=0.0177) improvement in the survival of female versus male mice after treatment with the CD4+ HY specific anti-CD19 CAR T cells, and female mice that received HY anti-CD19 CAR T cells survived longer than untreated control females (p=0.01). Remarkably, the survival of male mice that received HY anti-CD19 CAR T cells was statistically worse than untreated control males (p=0.008). This suggests that the presence of TCR antigen negatively impacts the function of CAR T cells. Furthermore, in a separate experiment using an equally mixed population of Marilyn (CD4+) and Matahari (CD8+) HY specific T cells, males has a statistically significantly (p=0.0116) worse survival compared to females after receiving 5E5 HY specific T cells. In conclusion, simultaneous stimulation through both CAR and TCR results in attenuated cytokine production and degranulation by CD8 T cells. In vivo, in the presence of the endogenous TCR antigen, both CD4 and CD8 CAR T cells are less potent at eradicating leukemia. These have implications for the development of universal donors for CAR T cell therapy. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Xiao Huang ◽  
Jasper Z. Williams ◽  
Ryan Chang ◽  
Zhongbo Li ◽  
Eric Gai ◽  
...  

Advanced biomaterials provide versatile ways to spatially and temporally control immune cell activity, potentially enhancing their therapeutic potency and safety. Precise cell modulation demands multi-modal display of functional proteins with controlled densities on biomaterials. Here, we develop an artificial immune cell engager (AICE) platform – biodegradable particles onto which multiple proteins are densely loaded with ratiometric control via short nucleic acid tethers. We demonstrate the impact of AICE with varying ratios of anti-CD3 and anti-CD28 antibodies onex vivoexpansion of human primary T cells. We also show that AICE can be used to control the activity of engineered T cellsin vivo. AICE injected intratumorally can provide a local priming signal for systemically administered AND-gate chimeric antigen receptor T cells, driving local tumor clearance while sparing uninjected tumors that model potentially cross-reactive healthy tissues. This modularly functionalized biomaterial thus provides a flexible platform to achieve sophisticated control over cell-based immunotherapies.


2020 ◽  
Author(s):  
Qibin Liao ◽  
Yunyu Mao ◽  
Huan He ◽  
Xiangqing Ding ◽  
Xiaoyan Zhang ◽  
...  

Abstract Background: On-target off-tumor toxicity impedes the clinical application of chimeric antigen receptor-modified T cells (CAR-T cells) in the treatment of solid tumors. The combinatorial antigen recognition strategy can improve the therapeutic safety of CAR-T cells by targeting two different tumor-associated antigens (TAAs) using a CAR and a chimeric costimulatory receptor (CCR). Although programmed death-ligand 1 (PD-L1, also known as B7-H1) is expressed on multiple tumors, the potential of PD-L1 as a universal target for designing CCR remains unknown.Methods: A first-generation CD19 or HER2 CAR and a PD-L1 CCR containing the CD28 signaling domain were constructed and delivered into Jurkat T cells or primary T cells by a pseudotyped lentivirus. The release of cytokines, including IL-2, IFN-γ and TNF-α, was quantified using enzyme-linked immunosorbent assay (ELISA) kits or a cytometric bead array (CBA). The in vitro cytotoxicity of CAR-T cells was detected with a luciferase-based killing assay. The in vitro proliferation of CAR-T cells was assessed by flow cytometry. The therapeutic safety and efficacy of CAR-T cells was evaluated using a subcutaneous dual-tumor model in vivo.Results: Jurkat T cells or primary T cells expressing both the CD19/HER2 CAR and PD-L1 CCR produced higher levels of cytokines in the presence of CD19/HER2 and PD-L1 than in the presence of HER2/CD19. Compared to HER2-z-engineered T cells, HER2-z-PD-L1-28-engineered T cells had higher in vitro cytotoxicity potential against PD-L1-positive tumor cells. CD19/HER2-z-PD-L1-28-engineered T cells showed higher proliferation potential in the presence of CD19/HER2 and PD-L1 than in the absence of PD-L1. CD19/HER2-z-PD-L1-28-engineered T cells preferably destroyed xenograft tumors expressing CD19/HER2 and PD-L1 in vivo and did not significantly affect CD19/HER2-expressing tumors. The PD-L1 CCR improved the antitumor efficacy of low-affinity HER2 CAR-T cells against PD-L1-positive tumors expressing high levels of HER2.Conclusion: Our findings confirmed that PD-L1 can be used as a universal target antigen for designing CCR, improving the efficacy of CAR-T cells in the treatment of PD-L1-positive solid tumors but reducing toxicity within PD-L1-negative normal tissues expressing low levels of TAA in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Valérie Janelle ◽  
Mathieu Neault ◽  
Marie-Ève Lebel ◽  
Dave Maurice De Sousa ◽  
Salix Boulet ◽  
...  

T-cell dysfunction arising upon repeated antigen exposure prevents effective immunity and immunotherapy. Using various clinically and physiologically relevant systems, we show that a prominent feature of PD-1-expressing exhausted T cells is the development of cellular senescence features both in vivo and ex vivo. This is associated with p16INK4a expression and an impaired cell cycle G1 to S-phase transition in repeatedly stimulated T cells. We show that these T cells accumulate DNA damage and activate the p38MAPK signaling pathway, which preferentially leads to p16INK4a upregulation. However, in highly dysfunctional T cells, p38MAPK inhibition does not restore functionality despite attenuating senescence features. In contrast, p16INK4a targeting can improve T-cell functionality in exhausted CAR T cells. Collectively, this work provides insights into the development of T-cell dysfunction and identifies T-cell senescence as a potential target in immunotherapy.


2021 ◽  
Vol 13 (575) ◽  
pp. eabb6295
Author(s):  
Max Jan ◽  
Irene Scarfò ◽  
Rebecca C. Larson ◽  
Amanda Walker ◽  
Andrea Schmidts ◽  
...  

Cell-based therapies are emerging as effective agents against cancer and other diseases. As autonomous “living drugs,” these therapies lack precise control. Chimeric antigen receptor (CAR) T cells effectively target hematologic malignancies but can proliferate rapidly and cause toxicity. We developed ON and OFF switches for CAR T cells using the clinically approved drug lenalidomide, which mediates the proteasomal degradation of several target proteins by inducing interactions between the CRL4CRBN E3 ubiquitin ligase and a C2H2 zinc finger degron motif. We performed a systematic screen to identify “super-degron” tags with enhanced sensitivity to lenalidomide-induced degradation and used these degradable tags to generate OFF-switch degradable CARs. To create an ON switch, we engineered a lenalidomide-inducible dimerization system and developed split CARs that required both lenalidomide and target antigen for activation. Subtherapeutic lenalidomide concentrations controlled the effector functions of ON- and OFF-switch CAR T cells. In vivo, ON-switch split CARs demonstrated lenalidomide-dependent antitumor activity, and OFF-switch degradable CARs were depleted by drug treatment to limit inflammatory cytokine production while retaining antitumor efficacy. Together, the data showed that these lenalidomide-gated switches are rapid, reversible, and clinically suitable systems to control transgene function in diverse gene- and cell-based therapies.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 192-192
Author(s):  
Adrienne H. Long ◽  
Rimas J. Orentas ◽  
Crystal L. Mackall

Abstract Introduction Chimeric antigen receptors (CARs) provide a promising new approach for the adoptive immunotherapy of cancer. Though impressive antitumor activity has been observed with some CAR T cells, other CAR T cells demonstrate poor antitumor efficacy in vivo despite high cytolytic capacity in vitro due to poor expansion and persistence. Whether exhaustion of CAR T cells mirrors exhaustion that occurs naturally in chronically stimulated human T cells has not yet been studied. Here, we report that expression of select CD28 containing CARs in normal human T cells rapidly induces an exhausted state characterized by high PD-1 expression, poor persistence and poor antitumor efficacy, whereas other CARs do not induce this phenotype. Results Human T cells were expanded with anti-CD3/CD28 beads, and then transduced with a second-generation (CD28-CD3ζ) disialoganglioside 2 (GD2) specific CAR or a second-generation (CD28-CD3ζ) CD19 specific CAR. By day 7 of in vitro expansion, GD2 CAR T cells developed a metabolism more highly dependent on glycolysis compared to CD19 CAR T cells or untransduced controls. Neither CAR population was exposed to antigen during this expansion period. Using a Seahorse Extracellular Flux Analyzer, the ratio of glycolysis to oxidative phosphorylation rates (ECAR:OCR ratio) of GD2 CAR T cells was found to be double that of CD19 CAR T cells or controls on day 7. The highly glycolytic metabolism of GD2 CAR T cells was associated with an exhausted phenotype. GD2 CAR T cells expressed higher levels of PD-1, TIM-3 and LAG-3, and transcription repressor BLIMP-1, compared to CD19 CAR T cells or untransduced controls. Additionally, GD2 CAR T cells were poor cytokine producers, generating <10x lower levels of IL2, TNFα and IFNγ than CD19 CAR T cells upon in vitro co-incubation with a GD2+CD19+ osteosarcoma line (143B-CD19), despite maintaining comparable in vitro cytolytic ability. GD2 CAR T cells showed poor in vitro expansion and increased rates of apoptosis compared to controls. GD2 CAR T cells also did not persist and did not mediate antitumor effects against GD2+CD19+ tumors in a murine xenograft model in vivo, whereas CD19 CAR T cells completely eradicated CD19+ tumors and persisted in both the spleen and tumor compartments. To rule out the possibility that diminished cytokine production and in vivo efficacy was related to antigen specific effects, T cells were co-transduced with both the GD2 and CD19 CARs. Though single-transduced CD19 CAR T cells show no signs of an altered metabolism or exhaustion and have strong antitumor efficacy, CD19 CAR T cells co-transduced with the GD2 CAR demonstrate an exhausted phenotype and diminished antitumor efficacy similar to that of single-transduced GD2 CAR T cells. Thus, expression of the GD2 CAR confers a dominant exhausted phenotype in T cells, and prevents otherwise efficacious CARs from mediating strong antitumor effects. We hypothesized that chronic signaling of CD3ζ and CD28 via the GD2 CAR results in exhaustion. Interestingly, however, we did not identify GD2 expression in the culture system. Point mutations in the CAR antigen-binding site, though abrogating GD2 binding, did not prevent the development of exhaustion. Thus, we postulate that constitutive receptor signaling may occur via interactions between the framework regions of the CAR receptors. Importantly however, substitution of 4-1BB for the CD28 domain in the GD2 CAR substantially diminished PD-1 expression, one of the hallmark features of exhausted T cells. Conclusions We report that expression of a CD28 containing GD2 CAR induces both an altered metabolism and an exhausted state in human T cells, resulting in poor in vivo persistence and antitumor efficacy. We hypothesize that tonic signaling through the GD2 CAR induces this phenotype and have identified the CD28 domain as an important component contributing to this phenotype. Rapid induction of exhaustion mediated via a synthetic receptor provides a novel model system to identify mechanistic factors required for this phenotype in human T cells. Work is currently underway to molecularly define the basis for the exhaustion of GD2 CAR T cells and to probe a potential role for altered T cell metabolism as a contributor to T cell exhaustion in human T cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document