scholarly journals Regeneration is a partial redeployment of the embryonic gene network

2019 ◽  
Author(s):  
Jacob F. Warner ◽  
Aldine R. Amiel ◽  
Hereroa Johnston ◽  
Eric Röttinger

AbstractFor more than a century, researchers have been trying to understand the relationship between embryogenesis and regeneration (Morgan 1901). A long-standing hypothesis is that biological processes originally used during embryogenesis are re-deployed during regeneration. In the past decade, we have begun to understand the relationships of genes and their organization into regulatory networks responsible for driving embryogenesis (Davidson et al. 2002; Röttinger et al. 2012) and regeneration (Srivastava et al. 2014; Lobo and Levin 2015; Rodius et al. 2016) in diverse taxa. Here, we compare these networks in the same species to investigate how regeneration re-uses genetic interactions originally set aside for embryonic development. Using a uniquely suited embryonic development and whole-body regeneration model, the sea anemone Nematostella vectensis, we show that at the transcriptomic level the regenerative program partially re-uses elements of the embryonic gene network in addition to a small cohort of genes that are only activated during regeneration. We further identified co-expression modules that are either i) highly conserved between these two developmental trajectories and involved in core biological processes or ii) regeneration specific modules that drive cellular events unique to regeneration. Finally, our functional validation reveals that apoptosis is a regeneration-specific process in Nematostella and is required for the initiation of the regeneration program. These results indicate that regeneration reactivates embryonic gene modules to accomplish basic cellular functions but deploys a novel gene network logic to activate the regenerative process.

2005 ◽  
Vol 33 (6) ◽  
pp. 1418-1420 ◽  
Author(s):  
S. Vavassori ◽  
K. Wang ◽  
L.M. Schweizer ◽  
M. Schweizer

The model eukaryote Saccharomyces cerevisiae is well suited to investigate the causes of metabolic disturbance. PRPP [5-phospho-D-ribosyl-1(α)-pyrophosphate] may be regarded as a junction of carbon and nitrogen metabolism. As a result of this central position, perturbations in its synthesis can give rise to many unexpected cellular events, such as impaired cell integrity. We have taken advantage of S. cerevisiae's genetic tractability to investigate the metabolic links responsible for connecting the biochemical intermediate PRPP to apparently unrelated cellular functions. This approach provides insight into the co-ordination of different biological processes.


Impact ◽  
2018 ◽  
Vol 2018 (3) ◽  
pp. 89-91
Author(s):  
Shin-ichi Tate

The field of molecular biology has provided great insights into the structure and function of key molecules. Thanks to this area of research, we can now grasp the biological details of DNA and have characterised an enormous number of molecules in massive data bases. These 'biological periodic tables' have allowed scientists to connect molecules to particular cellular events, furthering scientific understanding of biological processes. However, molecular biology has yet to answer questions regarding 'higher-order' molecular architecture, such as that of chromatin. Chromatin is the molecular material that serves as the building block for chromosomes, the structures that carry an organism's genetic information inside of the cell's nucleus. Understanding the physical properties of chromatin is crucial in developing a more thorough picture of how chromatin's structure relate to its key cellular functions. Moreover, by establishing a physical model of chromatin, scientists will be able to open the doors into the true inner workings of the cell nucleus. Professor Shin-ichi Tate and his team of researchers at Hiroshima University's Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), are attempting to do just that. Through a five-year grant funded by the Platform for Dynamic Approaches to Living Systems from the Ministry of Education, Culture, Sports, Science and Technology, Tate is aiming to gain a clearer understanding of the structure and dynamics of chromatin.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 255
Author(s):  
Katharina F. Witting ◽  
Monique P.C. Mulder

Post-translational modification with Ubiquitin-like proteins represents a complex signaling language regulating virtually every cellular process. Among these post-translational modifiers is Ubiquitin-fold modifier (UFM1), which is covalently attached to its substrates through the orchestrated action of a dedicated enzymatic cascade. Originally identified to be involved embryonic development, its biological function remains enigmatic. Recent research reveals that UFM1 regulates a variety of cellular events ranging from DNA repair to autophagy and ER stress response implicating its involvement in a variety of diseases. Given the contribution of UFM1 to numerous pathologies, the enzymes of the UFM1 cascade represent attractive targets for pharmacological inhibition. Here we discuss the current understanding of this cryptic post-translational modification especially its contribution to disease as well as expand on the unmet needs of developing chemical and biochemical tools to dissect its role.


mBio ◽  
2013 ◽  
Vol 4 (5) ◽  
Author(s):  
Matthew J. Bush ◽  
Maureen J. Bibb ◽  
Govind Chandra ◽  
Kim C. Findlay ◽  
Mark J. Buttner

ABSTRACTWhiA is a highly unusual transcriptional regulator related to a family of eukaryotic homing endonucleases. WhiA is required for sporulation in the filamentous bacteriumStreptomyces, but WhiA homologues of unknown function are also found throughout the Gram-positive bacteria. To better understand the role of WhiA inStreptomycesdevelopment and its function as a transcription factor, we identified the WhiA regulon through a combination of chromatin immunoprecipitation-sequencing (ChIP-seq) and microarray transcriptional profiling, exploiting a new model organism for the genus,Streptomyces venezuelae, which sporulates in liquid culture. The regulon encompasses ~240 transcription units, and WhiA appears to function almost equally as an activator and as a repressor. Bioinformatic analysis of the upstream regions of the complete regulon, combined with DNase I footprinting, identified a short but highly conserved asymmetric sequence, GACAC, associated with the majority of WhiA targets. Construction of a null mutant showed thatwhiAis required for the initiation of sporulation septation and chromosome segregation inS. venezuelae, and several genes encoding key proteins of theStreptomycescell division machinery, such asftsZ,ftsW, andftsK, were found to be directly activated by WhiA during development. Several other genes encoding proteins with important roles in development were also identified as WhiA targets, including the sporulation-specific sigma factor σWhiGand the diguanylate cyclase CdgB. Cell division is tightly coordinated with the orderly arrest of apical growth in the sporogenic cell, andfilP, encoding a key component of the polarisome that directs apical growth, is a direct target for WhiA-mediated repression during sporulation.IMPORTANCESince the initial identification of the genetic loci required forStreptomycesdevelopment, all of thebldandwhidevelopmental master regulators have been cloned and characterized, and significant progress has been made toward understanding the cell biological processes that drive morphogenesis. A major challenge now is to connect the cell biological processes and the developmental master regulators by dissecting the regulatory networks that link the two. Studies of these regulatory networks have been greatly facilitated by the recent introduction ofStreptomyces venezuelaeas a new model system for the genus, a species that sporulates in liquid culture. Taking advantage ofS. venezuelae, we have characterized the regulon of genes directly under the control of one of these master regulators, WhiA. Our results implicate WhiA in the direct regulation of key steps in sporulation, including the cessation of aerial growth, the initiation of cell division, and chromosome segregation.


Author(s):  
Jonghoon Kim ◽  
Nohyun Lee ◽  
Taeghwan Hyeon

Molecular imaging enables us to non-invasively visualize cellular functions and biological processes in living subjects, allowing accurate diagnosis of diseases at early stages. For successful molecular imaging, a suitable contrast agent with high sensitivity is required. To date, various nanoparticles have been developed as contrast agents for medical imaging modalities. In comparison with conventional probes, nanoparticles offer several advantages, including controllable physical properties, facile surface modification and long circulation time. In addition, they can be integrated with various combinations for multimodal imaging and therapy. In this opinion piece, we highlight recent advances and future perspectives of nanomaterials for molecular imaging. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.


2017 ◽  
Vol 15 (02) ◽  
pp. 1650045 ◽  
Author(s):  
Olga V. Petrovskaya ◽  
Evgeny D. Petrovskiy ◽  
Inna N. Lavrik ◽  
Vladimir A. Ivanisenko

Gene network modeling is one of the widely used approaches in systems biology. It allows for the study of complex genetic systems function, including so-called mosaic gene networks, which consist of functionally interacting subnetworks. We conducted a study of a mosaic gene networks modeling method based on integration of models of gene subnetworks by linear control functionals. An automatic modeling of 10,000 synthetic mosaic gene regulatory networks was carried out using computer experiments on gene knockdowns/knockouts. Structural analysis of graphs of generated mosaic gene regulatory networks has revealed that the most important factor for building accurate integrated mathematical models, among those analyzed in the study, is data on expression of genes corresponding to the vertices with high properties of centrality.


2020 ◽  
Author(s):  
Yumiko Nakanishi ◽  
Ryouko Nozu ◽  
Masami Ueno ◽  
Kyoji Hioki ◽  
Chiharu Ishii ◽  
...  

Abstract Background: Aging is a progressive decline of cellular functions that ultimately affects whole-body homeostasis. Alterations in the gut microbiota associated with aging have been reported, however the molecular basis of the relationships between host aging and the gut microbiota is poorly understood.Result: By using longitudinal microbiome and metabolome characterization, we show that the aging-related alterations in the intestinal environment lead to gut dysbiosis with a potential to induce obesity in mice. In middle-age mice, we observed more than a 2-fold increase in fecal carbohydrates derived from dietary polysaccharides and a significant reduction of gut microbial diversity resembling the microbiota characteristic of obese mice. Consistently, fecal microbiota transplantation from middle-age specific pathogen-free (SPF) mice into young germ-free (GF) mice resulted in increased weight gain and impaired glucose tolerance.Conclusion: Our findings provide new insights into the relationships between host aging and gut dysbiosis and may contribute to the development of a possible solution to aging-related obesity.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Naidu M ◽  
David P

Injury to a peripheral nerve leads to degeneration of the segment distal to the site of lesion, a process referred to as Wallerian degeneration. During Wallerian degeneration, axons and myelin sheaths undergo degeneration and are phagocytosed by macrophages and Schwann cells. The Schwann cells proliferate and the endoneurial tubes persist, together the whole structure is known as the band of Büngner. Within few hours, the damaged axons in the proximal stump initiate a regeneration response, with formation of new growth cones. During Wallerian degeneration, neurotrophins, neural cell adhesion molecules, cytokines and other soluble factors are upregulated to facilitate regeneration. The recovery of the target in mammals is often variable, but almost never complete. In humans, scar tissue forms at the site of lesion and this often results in poor recovery of the target. The major events underlying this regenerative process is highlighted and discussed in this review.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Wang ◽  
Kang Zhuang ◽  
Lei Gao ◽  
Linna Zhang ◽  
Hongling Yang

Visual environment plays an important role in the occurrence of myopia. We previously showed that the different flashing lights could result in distinct effects on the ocular growth and development of myopia. CCN2 has been reported to regulate various cellular functions and biological processes. However, whether CCN2 signaling was involved in the red flashing light-induced myopia still remains unknown. In the present study, we investigated the effects of the red flashing lights exposure on the refraction and axial length of the eyesin vivoand then evaluated their effects on the expression of CCN2 and TGF-βin sclera tissues. Our data showed that the eyes exposed to the red flashing light became more myopic with a significant increase of the axial length and decrease of the refraction. Both CCN2 and TGF-β, as well as p38 MAPK and PI3K, were highly expressed in the sclera tissues exposed to the red flashing light. Both CCN2 and TGF-βwere found to have the same gene expression profilein vivo. In conclusion, our findings found that CCN2 signaling pathway plays an important role in the red flashing light-induced myopiain vivo. Moreover, our study establishes a useful animal model for experimental myopia research.


Author(s):  
Roxane-Marie Barthélémy ◽  
Michel Grino ◽  
Pierre Pontarotti ◽  
Jean-Paul Casanova ◽  
Eric Faure

AbstractChaetognaths constitute a small marine phylum of approximately 120 species. Two classes of both 18S and 28S rRNA gene sequences have been evidenced in this phylum, even though significant intraindividual variation in the sequences of rRNA genes is unusual in animal genomes. These observations led to the hypothesis that this unusual genetic characteristic could play one or more physiological role(s). Using in situ hybridization on the frontal sections of the chaetognath Spadella cephaloptera, we found that the 18S Class I genes are expressed in the whole body, with a strong expression throughout the gut epithelium, whereas the expression of the 18S Class II genes is restricted to the oocytes. Our results could suggest that the paralog products of the 18S Class I genes are probably the “housekeeping” 18S rRNAs, whereas those of class II would only be essential in specific tissues. These results provide support for the idea that each type of 18S paralog is important for specific cellular functions and is under the control of selective factors.


Sign in / Sign up

Export Citation Format

Share Document