scholarly journals Genome-wide transposon screen of aPseudomonas syringae mexBmutant reveals the substrates of efflux transporters

2019 ◽  
Author(s):  
Tyler C. Helmann ◽  
Caitlin L. Ongsarte ◽  
Jennifer Lam ◽  
Adam M. Deutschbauer ◽  
Steven E. Lindow

AbstractBacteria express numerous efflux transporters that confer resistance to diverse toxicants present in their environment. Due to a high level of functional redundancy of these transporters, it is difficult to identify those that are of most importance in conferring resistance to specific compounds. The resistance-nodulation-division (RND) protein family is one such example of redundant transporters that are widespread among Gram-negative bacteria. Within this family, the MexAB-OprM protein complex is highly-expressed and conserved amongPseudomonasspecies. We exposed barcoded transposon mutant libraries in isogenic wild-type and ΔmexBbackgrounds inP. syringaeB728a to diverse toxic compoundsin vitroto identify mutants with increased susceptibility to these compounds. Mutants in genes encoding both known and novel redundant transporters, but with partially overlapping substrate specificities were observed in a ΔmexBbackground. Psyr_0228, an uncharacterized member of the Major Facilitator Superfamily of transporters, preferentially contributes to tolerance of acridine orange and acriflavine. Another transporter located in the inner membrane, Psyr_0541, contributes to tolerance to acriflavine and berberine. The presence of multiple redundant, genomically encoded, efflux transporters appears to enable bacterial strains to tolerate a diversity of environmental toxins. This genome-wide screen in a hyper-susceptible mutant strain revealed numerous transporters that would otherwise be dispensable in these conditions. Bacterial strains such asP. syringaethat likely encounter diverse toxins in their environment such as in association with many different plant species, probably benefit from possessing multiple redundant transporters that enable versatility to tolerate novel toxicants.

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Tyler C. Helmann ◽  
Caitlin L. Ongsarte ◽  
Jennifer Lam ◽  
Adam M. Deutschbauer ◽  
Steven E. Lindow

ABSTRACT Bacteria express numerous efflux transporters that confer resistance to diverse toxicants present in their environment. Due to a high level of functional redundancy of these transporters, it is difficult to identify those that are of most importance in conferring resistance to specific compounds. The resistance-nodulation-division (RND) protein family is one such example of redundant transporters that are widespread among Gram-negative bacteria. Within this family, the MexAB-OprM protein complex is highly expressed and conserved among Pseudomonas species. We exposed barcoded transposon mutant libraries in isogenic wild-type and ΔmexB backgrounds in P. syringae B728a to diverse toxic compounds in vitro to identify mutants with increased susceptibility to these compounds. Mutants with mutations in genes encoding both known and novel redundant transporters but with partially overlapping substrate specificities were observed in a ΔmexB background. Psyr_0228, an uncharacterized member of the major facilitator superfamily of transporters, preferentially contributes to tolerance of acridine orange and acriflavine. Another transporter located in the inner membrane, Psyr_0541, contributes to tolerance of acriflavine and berberine. The presence of multiple redundant, genomically encoded efflux transporters appears to enable bacterial strains to tolerate a diversity of environmental toxins. This genome-wide screen performed in a hypersusceptible mutant strain revealed numerous transporters that would otherwise be dispensable under these conditions. Bacterial strains such as P. syringae that likely encounter diverse toxins in their environment, such as in association with many different plant species, probably benefit from possessing multiple redundant transporters that enable versatility with respect to toleration of novel toxicants. IMPORTANCE Bacteria use protein pumps to remove toxic compounds from the cell interior, enabling survival in diverse environments. These protein pumps can be highly redundant, making their targeted examination difficult. In this study, we exposed mutant populations of Pseudomonas syringae to diverse toxicants to identify pumps that contributed to survival in those conditions. In parallel, we examined pump redundancy by testing mutants of a population lacking the primary efflux transporter responsible for toxin tolerance. We identified partial substrate overlap for redundant transporters, as well as several pumps that appeared more substrate specific. For bacteria that are found in diverse environments, having multiple, partially redundant efflux pumps likely allows flexibility in habitat colonization.


2021 ◽  
Vol 14 (6) ◽  
pp. 572
Author(s):  
Fernando Durães ◽  
Andreia Palmeira ◽  
Bárbara Cruz ◽  
Joana Freitas-Silva ◽  
Nikoletta Szemerédi ◽  
...  

The overexpression of efflux pumps is one of the causes of multidrug resistance, which leads to the inefficacy of drugs. This plays a pivotal role in antimicrobial resistance, and the most notable pumps are the AcrAB-TolC system (AcrB belongs to the resistance-nodulation-division family) and the NorA, from the major facilitator superfamily. In bacteria, these structures can also favor virulence and adaptation mechanisms, such as quorum-sensing and the formation of biofilm. In this study, the design and synthesis of a library of thioxanthones as potential efflux pump inhibitors are described. The thioxanthone derivatives were investigated for their antibacterial activity and inhibition of efflux pumps, biofilm formation, and quorum-sensing. The compounds were also studied for their potential to interact with P-glycoprotein (P-gp, ABCB1), an efflux pump present in mammalian cells, and for their cytotoxicity in both mouse fibroblasts and human Caco-2 cells. The results concerning the real-time ethidium bromide accumulation may suggest a potential bacterial efflux pump inhibition, which has not yet been reported for thioxanthones. Moreover, in vitro studies in human cells demonstrated a lack of cytotoxicity for concentrations up to 20 µM in Caco-2 cells, with some derivatives also showing potential for P-gp modulation.


2010 ◽  
Vol 55 (3) ◽  
pp. 947-953 ◽  
Author(s):  
Sébastien Coyne ◽  
Patrice Courvalin ◽  
Bruno Périchon

ABSTRACTAmongAcinetobacterspp.,A. baumanniiis the most frequently implicated in nosocomial infections, in particular in intensive care units. It was initially thought that multidrug resistance (MDR) in this species was due mainly to horizontal acquisition of resistance genes. However, it has recently become obvious that increased expression of chromosomal genes for efflux systems plays a major role in MDR. Among the five superfamilies of pumps, resistance-nodulation-division (RND) systems are the most prevalent in multiply resistantA. baumannii. RND pumps typically exhibit a wide substrate range that can include antibiotics, dyes, biocides, detergents, and antiseptics. Overexpression of AdeABC, secondary to mutations in theadeRSgenes encoding a two-component regulatory system, constitutes a major mechanism of multiresistance inA. baumannii. AdeIJK, intrinsic to this species, is responsible for natural resistance, but since overexpression above a certain threshold is toxic for the host, its contribution to acquired resistance is minimal. The recently described AdeFGH, probably regulated by a LysR-type transcriptional regulator, also confers multidrug resistance when overexpressed. Non-RND efflux systems, such as CraA, AmvA, AbeM, and AbeS, have also been characterized forA. baumannii, as have AdeXYZ and AdeDE for otherAcinetobacterspp. Finally, acquired narrow-spectrum efflux pumps, such as the major facilitator superfamily (MFS) members TetA, TetB, CmlA, and FloR and the small multidrug resistance (SMR) member QacE inAcinetobacterspp., have been detected and are mainly encoded by mobile genetic elements.


2019 ◽  
Vol 63 (3) ◽  
Author(s):  
María Pérez-Varela ◽  
Jordi Corral ◽  
Jesús Aranda ◽  
Jordi Barbé

ABSTRACT Although the relationship between Acinetobacter baumannii efflux pumps and antimicrobial resistance is well documented, less is known about the involvement of these proteins in the pathogenicity of this nosocomial pathogen. In previous work, we identified the AbaQ major facilitator superfamily (MFS) efflux pump and demonstrated its participation in the motility and virulence of A. baumannii. In the present study, we examined the role in these processes of A. baumannii transporters belonging to different superfamilies of efflux pumps. Genes encoding known or putative permeases belonging to efflux pump superfamilies other than the MFS were selected, and the corresponding knockouts were constructed. The antimicrobial susceptibilities of these mutants were consistent with previously reported data. In mutants of A. baumannii strain ATCC 17978 carrying inactivated genes encoding the efflux pumps A1S_2736 (resistance nodulation division [RND]), A1S_3371 (multidrug and toxic compound extrusion [MATE]), and A1S_0710 (small multidrug resistance [SMR]), as well as the newly described ATP-binding cassette (ABC) permeases A1S_1242 and A1S_2622, both surface-associated motility and virulence were reduced compared to the parental strain. However, inactivation of the genes encoding the known ABC permeases A1S_0536 and A1S_1535, the newly identified putative ABC permeases A1S_0027 and A1S_1057, or the proteobacterial antimicrobial compound efflux (PACE) transporters A1S_1503 and A1S_2063 had no effects on bacterial motility or virulence. Our results demonstrate the involvement of antimicrobial transporters belonging at least to five of the six known efflux pump superfamilies in both surface-associated motility and virulence in A. baumannii ATCC 17978.


2005 ◽  
Vol 49 (7) ◽  
pp. 2965-2971 ◽  
Author(s):  
Martine Braibant ◽  
Jacqueline Chevalier ◽  
Elisabeth Chaslus-Dancla ◽  
Jean-Marie Pagès ◽  
Axel Cloeckaert

ABSTRACT The florfenicol-chloramphenicol resistance gene floR from Salmonella enterica was previously identified and postulated to belong to the major facilitator (MF) superfamily of drug exporters. Here, we confirmed a computer-predicted transmembrane topological model of FloR, using the phoA gene fusion method, and classified this protein in the DHA12 family (containing 12 transmembrane domains) of MF efflux transporters. We also showed that FloR is a transporter specific for structurally associated phenicol drugs (chloramphenicol, florfenicol, thiamphenicol) which utilizes the proton motive force to energize an active efflux mechanism. By site-directed mutagenesis of specific charged residues belonging to putative transmembrane segments (TMS), two residues essential for active efflux function, D23 in TMS1 and R109 in TMS4, were identified. Of these, the acidic residue D23 seems to participate directly in the affinity pocket involved in phenicol derivative recognition. A third residue, E283 in TMS9, seems to be necessary for correct membrane folding of the transporter.


2020 ◽  
Vol 11 ◽  
Author(s):  
Peter McErlean ◽  
Audrey Kelly ◽  
Jaideep Dhariwal ◽  
Max Kirtland ◽  
Julie Watson ◽  
...  

BackgroundAsthma is a chronic airway disease driven by complex genetic–environmental interactions. The role of epigenetic modifications in bronchial epithelial cells (BECs) in asthma is poorly understood.MethodsWe piloted genome-wide profiling of the enhancer-associated histone modification H3K27ac in BECs from people with asthma (n = 4) and healthy controls (n = 3).ResultsWe identified n = 4,321 (FDR < 0.05) regions exhibiting differential H3K27ac enrichment between asthma and health, clustering at genes associated predominately with epithelial processes (EMT). We identified initial evidence of asthma-associated Super-Enhancers encompassing genes encoding transcription factors (TP63) and enzymes regulating lipid metabolism (PTGS1). We integrated published datasets to identify epithelium-specific transcription factors associated with H3K27ac in asthma (TP73) and identify initial relationships between asthma-associated changes in H3K27ac and transcriptional profiles. Finally, we investigated the potential of CRISPR-based approaches to functionally evaluate H3K27ac-asthma landscape in vitro by identifying guide-RNAs capable of targeting acetylation to asthma DERs and inducing gene expression (TLR3).ConclusionOur small pilot study validates genome-wide approaches for deciphering epigenetic mechanisms underlying asthma pathogenesis in the airways.


1993 ◽  
Vol 342 (1301) ◽  
pp. 271-278 ◽  

Virus and fungal resistance traits are important targets in the genetic engineering of agricultural and horticultural crops. We have engineered resistance against potato virus X in important commercial potato cultivars. Four years of field trials with resistant potatoes have demonstrated the commercial feasibility of improving potato cultivars by selectively adding new traits while preserving intrinsic properties. In our pursuit for a broad resistance against fungi we have focused on the exploitation of genes encoding antifungal proteins. We present results demonstrating the antifungal effect of some of these proteins in vitro , as well as the synergy between specific chitinases and β-1,3-glucanases. We also report high level resistance against Fusarium oxysporum in transgenic tomato plants expressing a specific combination of genes encoding these enzymes.


2008 ◽  
Vol 57 (6) ◽  
pp. 784-789 ◽  
Author(s):  
Patrizia Spigaglia ◽  
Fabrizio Barbanti ◽  
Paola Mastrantonio ◽  
Jon S. Brazier ◽  
Frédéric Barbut ◽  
...  

The European Study Group on Clostridium difficile (ESGCD) conducted a prospective study in 2005 to monitor and characterize C. difficile strains circulating in European hospitals, collecting 411 isolates. Eighty-three of these isolates, showing resistance or intermediate resistance to moxifloxacin (MX), were selected for this study to assess susceptibility to other fluoroquinolones (FQs) and to analyse the gyr genes, encoding the DNA gyrase subunits GyrA and GyrB. Twenty MX-susceptible isolates from the surveillance study were included for comparison. Overall, one amino acid substitution in GyrA (Thr82 to Ile) and four different substitutions in GyrB (Ser416 to Ala, Asp426 to Asn, Asp426 to Val and Arg447 to Lys) were identified. A high level of resistance (MIC ≥32 μg ml−1) to MX, ciprofloxacin (CI), gatifloxacin (GA) and levofloxacin (LE) was found in 68 isolates showing the amino acid substitution Thr82 to Ile in GyrA, in eight isolates with the substitutions Thr82 to Ile in GyrA and Ser416 to Ala in GyrB, in two isolates showing the substitution Asp426 to Asn in GyrB and in one isolate with Asp426 to Val in GyrB. The remaining four isolates showed high MICs for CI and LE, but different MIC levels for MX and GA. In particular, intermediate levels of resistance to MX were shown by two isolates, one with the substitution Thr82 to Ile in GyrA, and one showing Asp426 to Asn in GyrB. The substitution Arg447 to Lys in GyrB was found in two strains resistant to MX, CI and LE but susceptible to GA. No substitutions in GyrA were found in the FQ-susceptible strains, whereas two strains showed the amino acid change Ser416 to Ala in GyrB. Thr82 to Ile was the most frequent amino acid change identified in the C. difficile isolates examined. In contrast to previous observations, 10 % of the isolates showed this substitution in association with Ser416 to Ala in GyrB. The other amino acid changes found were characteristic of a few strains belonging to certain types and/or countries. Two new substitutions for C. difficile, Ser416 to Ala and Arg447 to Lys, were found in GyrB. Whereas the former does not seem to have a key role in resistance, since it was also detected in susceptible strains, the latter substitution occurred in the same position where other amino acid variations take place in resistant Escherichia coli and other C. difficile strains. A large number of C. difficile isolates now show an alarming pattern of resistance to the majority of FQs currently used in hospitals and outpatient settings, therefore judicious use of these antibiotics and continuous monitoring of in vitro resistance are necessary.


2020 ◽  
Author(s):  
Chao Yang ◽  
Jiajing Wu ◽  
Xinhua Liu ◽  
Yue Wang ◽  
Beibei Liu ◽  
...  

AbstractCopy number gain in chromosome 8q21 is considered as the prototype of genetic abnormalities associated with development of breast cancer, yet the oncogenic potential underlying this amplicon in breast carcinogenesis remains to be delineated. We report here that ZNF704, a gene mapped to 8q21, is recurrently amplified in various malignancies including breast cancer. We found that ZNF704 acts as transcription repressor and interacts with the transcription corepressor SIN3A complex. Genome-wide interrogation of the transcriptional targets identifies that the ZNF704/SIN3A complex represses a panel of genes including PER2 that are critically involved in the function of circadian clock. Indeed, ZNF704 overexpression prolongs the period and dampens the amplitude of circadian clock. We showed that ZNF704 promotes the proliferation and invasion of breast cancer cells in vitro and accelerates the growth and metastasis of breast cancer in vivo. Consistently, the level of ZNF704 expression is inversely correlated with that of PER2 in breast carcinomas, and high level of ZNF704 correlates with advanced histological grades, lymph node positivity, and poor prognosis of breast cancer patients, especially those with HER2+ and basal-like subtypes. These results indicate that ZNF704 is an important regulator of circadian clock and a potential driver for breast carcinogenesis.


Author(s):  
Vanessa Kornelsen ◽  
Ayush Kumar

Acinetobacter spp. have become of increased clinical importance as studies have shown the antimicrobial resistant potential of these species. Efflux pumps can lead to reduced susceptibility to a variety of antibiotics and are present in large number across Acinetobacter spp. There are six families of efflux pumps that have been shown to be of clinical relevance: the Major Facilitator Superfamily (MFS), Small Multidrug Resistance (SMR) family, ATP-binding cassette (ABC) family, Multidrug and Toxic Compound Extrusion (MATE) family, Proteobacterial Antimicrobial Compound Efflux (PACE) family and Resistance-Nodulation-Division (RND) family. A lot of work has been done on understanding and characterizing the roles that these efflux pumps play in relation to antimicrobial resistance and the physiology of these bacteria. RND efflux pumps, with their expansive substrate profiles, are a major component of Acinetobacter spp. antimicrobial resistance. New discoveries over the last decade have shed a lot of light on to the complex regulation of these efflux pumps leading to greater understanding and potential of slowing the reduced susceptibility seen by these bacterial species.


Sign in / Sign up

Export Citation Format

Share Document