scholarly journals Adult crowding induces sexual dimorphism in chronic stress-response in Drosophila melanogaster

2019 ◽  
Author(s):  
Shraddha Lall ◽  
Akhila Mudunuri ◽  
S. Santhosh ◽  
Akshay Malwade ◽  
Aarcha Thadi ◽  
...  

ABSTRACTStress-induced mood disorders such as depression and anxiety are sexually dimorphic in human beings. Studying behavioural stress-responses in non-human animal models can help better understand the behavioural manifestations of these disorders and the dimorphism in their prevalence. Here we explore how sexes show differential behavioural responses to different chronic stressors, both abiotic and biotic, by using outbred populations of Drosophila melanogaster. The behaviours studied – namely, anhedonia, motivation to explore a novel habitat, locomotor activity and sleep levels – have been well-investigated in human and rodent-based models of stress disorders. These behaviours were studied in the context of two different stressors – mechanical perturbation and adult crowding. Responses to stress were found to be sexually dimorphic, and stressed females showed more behavioural changes, such as a reduced motivation to explore a novel habitat. Furthermore, adult crowding caused a greater number of sexually dimorphic behavioural changes than mechanical perturbation. For instance, while mechanical perturbation caused anhedonia across sexes, only females were anhedonic after crowding. We thus make a case for Drosophila melanogaster as a model system for studying sexual dimorphism in stress-induced mood disorders in humans.SUMMARY STATEMENTFemale fruit flies, like their human counterparts, are more prone to chronic stress-induced mood disorders like anhedonia or reduced activity. This sexual dimorphism was more evident in a biotic stress.

1984 ◽  
Vol 44 (2) ◽  
pp. 125-132 ◽  
Author(s):  
James A. Birchler

SUMMARYA modifier locus is described that alters the level of phenotypic expression of the third chromosome mutant glass in a sex specific manner. Alternative alleles either confer a sexually dimorphic level of pigment in glass mutants, with the male being greater, or cause similar expression in the two sexes. The alleles are indistinguishable in females but produce the respective phenotypes in males. The gene maps to the tip of the X chromosome at position 0·96 ± 0·11. Cytologically, the locus is present between polytene bands 3A6–8 and 3C2–3 as determined by its inclusion in translocated X segments in w + Y, Dp(l;2)w70h31 and Dp(l;3)w67k27 The dimorphic allele is dominant to the nondimorphic condition in males heterozygous for an insertional translocation carrying the dimorphic allele and a normal chromosome carrying the nondimorphic form. The dimorphic allele in two doses in males does not exhibit a dosage effect. The modifier phenotype is unaffected in two X flies by the presence of the transformer mutation.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 379
Author(s):  
Hou-Hong Zhang ◽  
Yu-Cheng Xie ◽  
Han-Jing Li ◽  
Ji-Chong Zhuo ◽  
Chuan-Xi Zhang

Intersex(ix), a gene involved in the sex-determining cascade of Drosophila melanogaster, works in concert with the female-specific product of doublesex (dsx) at the end of the hierarchy to implement the sex-specific differentiation of sexually dimorphic characters in female individuals. In this study, the ix homolog was identified in the brown planthopper (BPH), Nilaparvata lugens, which contained two splice variants expressed in both female and male insects. We found that Nlix played a vital role in the early nymphal development of BPH, showing an accumulated effect. RNAi-mediated knockdown of Nlix at 4th instar led to the external genital defects in both sexes, consequently resulting in the loss of reproductive ability in female and male individuals. After dsRNA injection, the males were normal on testes, while the females had defective ovarian development. Nlix was also required for early embryogenesis. Notably, when the dsNlix microinjection was performed in newly emerged females, the copulatory bursas were abnormally enlarged while the other tissues of the reproductive system developed normally. Our results demonstrated the pleiotropic roles of Nlix in embryogenesis and development of the reproductive system in a hemimetabolous insect species.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew Dieterich ◽  
Tonia Liu ◽  
Benjamin Adam Samuels

AbstractReward and motivation deficits are prominent symptoms in many mood disorders, including depression. Similar reward and effort-related choice behavioral tasks can be used to study aspects of motivation in both rodents and humans. Chronic stress can precipitate mood disorders in humans and maladaptive reward and motivation behaviors in male rodents. However, while depression is more prevalent in women, there is relatively little known about whether chronic stress elicits maladaptive behaviors in female rodents in effort-related motivated tasks and whether there are any behavioral sex differences. Chronic nondiscriminatory social defeat stress (CNSDS) is a variation of chronic social defeat stress that is effective in both male and female mice. We hypothesized that CNSDS would reduce effort-related motivated and reward behaviors, including reducing sensitivity to a devalued outcome, reducing breakpoint in progressive ratio, and shifting effort-related choice behavior. Separate cohorts of adult male and female C57BL/6 J mice were divided into Control or CNSDS groups, exposed to the 10-day CNSDS paradigm, and then trained and tested in instrumental reward or effort-related behaviors. CNSDS reduced motivation to lever press in progressive ratio and shifted effort-related choice behavior from a high reward to a more easily attainable low reward in both sexes. CNSDS caused more nuanced impairments in outcome devaluation. Taken together, CNSDS induces maladaptive shifts in effort-related choice and reduces motivated lever pressing in both sexes.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Shaohua Qi ◽  
Abdullah Al Mamun ◽  
Conelius Ngwa ◽  
Sharmeen Romana ◽  
Rodney Ritzel ◽  
...  

Abstract Background Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. Methods To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. Results Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. Conclusions The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 353-364 ◽  
Author(s):  
Jerry A Coyne

Abstract Females of Drosophila melanogaster and its sibling species D. simulans have very different cuticular hydrocarbons, with the former bearing predominantly 7,11-heptacosadiene and the latter 7-tricosene. This difference contributes to reproductive isolation between the species. Genetic analysis shows that this difference maps to only the third chromosome, with the other three chromosomes having no apparent effect. The D. simulans alleles on the left arm of chromosome 3 are largely recessive, allowing us to search for the relevant regions using D. melanogaster deficiencies. At least four nonoverlapping regions of this arm have large effects on the hydrocarbon profile, implying that several genes on this arm are responsible for the species difference. Because the right arm of chromosome 3 also affects the hydrocarbon profile, a minimum of five genes appear to be involved. The large effect of the third chromosome on hydrocarbons has also been reported in the hybridization between D. simulans and its closer relative D. sechellia, implying either an evolutionaly convergence or the retention in D. sechllia of an ancestral sexual dimorphism.


2021 ◽  
Vol 13 (590) ◽  
pp. eabd6434
Author(s):  
Patrick Sweeney ◽  
Michelle N. Bedenbaugh ◽  
Jose Maldonado ◽  
Pauline Pan ◽  
Katelyn Fowler ◽  
...  

Ablation of hypothalamic AgRP (Agouti-related protein) neurons is known to lead to fatal anorexia, whereas their activation stimulates voracious feeding and suppresses other motivational states including fear and anxiety. Despite the critical role of AgRP neurons in bidirectionally controlling feeding, there are currently no therapeutics available specifically targeting this circuitry. The melanocortin-3 receptor (MC3R) is expressed in multiple brain regions and exhibits sexual dimorphism of expression in some of those regions in both mice and humans. MC3R deletion produced multiple forms of sexually dimorphic anorexia that resembled aspects of human anorexia nervosa. However, there was no sexual dimorphism in the expression of MC3R in AgRP neurons, 97% of which expressed MC3R. Chemogenetic manipulation of arcuate MC3R neurons and pharmacologic manipulation of MC3R each exerted potent bidirectional regulation over feeding behavior in male and female mice, whereas global ablation of MC3R-expressing cells produced fatal anorexia. Pharmacological effects of MC3R compounds on feeding were dependent on intact AgRP circuitry in the mice. Thus, the dominant effect of MC3R appears to be the regulation of the AgRP circuitry in both male and female mice, with sexually dimorphic sites playing specialized and subordinate roles in feeding behavior. Therefore, MC3R is a potential therapeutic target for disorders characterized by anorexia, as well as a potential target for weight loss therapeutics.


2000 ◽  
Vol 78 (11) ◽  
pp. 1987-1993 ◽  
Author(s):  
F Lefebvre ◽  
M Limousin ◽  
Y Caubet

In Oniscidea (terrestrial crustaceans), males are known to have longer antennae than females. This sexual dimorphism may result from a variety of selection pressures. However, some species are well known for their highly aggressive males, which use their antennae as weapons. We tested the hypothesis that longer antennae in males have been selected for by means of antennal contests. Morphological analysis of the antennae and behavioral analysis of male dyads were performed in parallel on 7 species. We demonstrate significant sexual dimorphism of the antennae in 6 of the 7 species, and various forms of male aggressiveness depending on the species. Our hypothesis was rejected because we found a negative correlation between the use of the antennae in contests and the magnitude of sexual dimorphism. Furthermore, some species are sexually dimorphic but the males never compete using their antennae. We propose and argue that scramble competition to be the first to find receptive females could explain why males have longer chemoreceptive antennae.


2018 ◽  
Vol 285 (1890) ◽  
pp. 20181717 ◽  
Author(s):  
Denon Start ◽  
Stephen De Lisle

Intraspecific variation can have important consequences for the structure and function of ecological communities, and serves to link community ecology to evolutionary processes. Differences between the sexes are an overwhelmingly common form of intraspecific variation, but its community-level consequences have never been experimentally investigated. Here, we manipulate the sex ratio of a sexually dimorphic predacious newt in aquatic mesocosms, then track their impact on prey communities. Female and male newts preferentially forage in the benthic and pelagic zones, respectively, causing corresponding reductions in prey abundances in those habitats. Sex ratio differences also explained a large proportion (33%) of differences in the composition of entire pond communities. Ultimately, we demonstrate the impact of known patterns of sexual dimorphism in a predator on its prey, uncovering overlooked links between evolutionary adaptation and the structure of contemporary communities. Given the extreme prevalence of sexual dimorphism, we argue that the independent evolution of the sexes will often have important consequences for ecological communities.


Author(s):  
Zackary A. Graham ◽  
Nicole Kaiser ◽  
Alexandre V. Palaoro

ABSTRACTIn many species, males possess specialized weaponry that have evolved to confer a benefit during aggressive interactions. Because male weaponry is typically an exaggerated or extreme version of pre-existing body parts, females often possess reduced or weaponry. Although much research has investigated sexual dimorphism in the sizes of such weapons, other weapon components, such as weapon performance or alternative weapon forms can also explain the evolution of weapon sexual dimorphisms. Here, we investigated the allometry and variation of multiple weapon components of hindleg weaponry in the male and female giant mesquite bugs, Thasus necalifornicus. Despite theory predicating greater allocation in male weaponry, we found that females allocated more into the lengths of their hindlegs compared to males. Despite this allocation, males possess relatively wider hindlegs, which likely increase area of muscle mass. Indeed, the squeezing performance of male hindlegs was much greater than that of female hindlegs. Lastly, we also described the allometry and variation in a male weapon component, prominent tibial spines, which likely are used to damage competitors during aggressive interaction. Overall, our findings highlight the intricacies of weapon sexual dimorphism and demonstrate the importance of measuring multiple weapon components and not a single measure.


Sign in / Sign up

Export Citation Format

Share Document