scholarly journals cis dominantly explains regulatory divergence between two indica rice genotypes; drought further enhances regulatory differences

2019 ◽  
Author(s):  
Nelzo C. Ereful ◽  
Antonio Laurena ◽  
Li-Yu Liu ◽  
Shu-Min Kao ◽  
Eric Tsai ◽  
...  

AbstractAbstract cis and/or trans regulatory divergence within or between related taxa on a genome-wide scale has been largely unexamined in crops, more so, the effect of stress on cis/trans architecture. In this study, the indica genotypes IR64, an elite drought-susceptible lowland variety, and Apo (IR55423-01 or NSIC RC9), a moderate drought-tolerant upland genotype together with their hybrid (IR64 × Apo) were exposed to non- and water-stress conditions. Evidence of cis and/or trans regulatory differences was tested between these two indica rice genotypes. By sequencing (RNA-seq) the parents and their hybrid, we are able to map genes diverging in cis and/or trans factors between the two genotypes. Under non-stress conditions, cis dominantly explains (11.2%) regulatory differences, followed by trans (8.9%). Further analysis showed that water-limiting conditions largely affect trans and cis + trans factors. Between the two inbred lines, Apo appears to exhibit higher expression fold change of genes enriched in “response to stress” and “photosynthesis” under non- and water-stress conditions. On the molecular level, cis and/or trans regulatory divergence explains their genotypic differences and differential drought response. Parent–hybrid RNA-seq has the potential to identify genes diverging in cis and/or trans factors even between intra-sub-specifically related genotypes. By comparing cis/trans landscape under stressed and unstressed conditions, this approach has the ability to assess the impact of drought on gene expression. Computational analysis and association of several drought-yield QTL markers with cis-diverging genes provide converging evidences suggestive of a potential approach to identify trait-associated candidate genes using hybrids and their parents alone.Key Messagecis dominantly explains divergence of two indica rice genotypes, IR64 and Apo under normal conditions while trans and cis + trans regulatory factors are largely affected by drought

Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 27
Author(s):  
Mahmoud M. Gaballah ◽  
Azza M. Metwally ◽  
Milan Skalicky ◽  
Mohamed M. Hassan ◽  
Marian Brestic ◽  
...  

Drought is the most challenging abiotic stress for rice production in the world. Thus, developing new rice genotype tolerance to water scarcity is one of the best strategies to achieve and maximize high yield potential with water savings. The study aims to characterize 16 rice genotypes for grain and agronomic parameters under normal and drought stress conditions, and genetic differentiation, by determining specific DNA markers related to drought tolerance using Simple Sequence Repeats (SSR) markers and grouping cultivars, establishing their genetic relationship for different traits. The experiment was conducted under irrigated (normal) and water stress conditions. Mean squares due to genotype × environment interactions were highly significant for major traits. For the number of panicles/plants, the genotypes Giza179, IET1444, Hybrid1, and Hybrid2 showed the maximum mean values. The required sterility percentage values were produced by genotypes IET1444, Giza178, Hybrid2, and Giza179, while, Sakha101, Giza179, Hybrid1, and Hybrid2 achieved the highest values of grain yield/plant. The genotypes Giza178, Giza179, Hybrid1, and Hybrid2, produced maximum values for water use efficiency. The effective number of alleles per locus ranged from 1.20 alleles to 3.0 alleles with an average of 1.28 alleles, and the He values for all SSR markers used varied from 0.94 to 1.00 with an average of 0.98. The polymorphic information content (PIC) values for the SSR were varied from 0.83 to 0.99, with an average of 0.95 along with a highly significant correlation between PIC values and the number of amplified alleles detected per locus. The highest similarity coefficient between Giza181 and Giza182 (Indica type) was observed and are susceptible to drought stress. High similarity percentage between the genotypes (japonica type; Sakha104 with Sakha102 and Sakha106 (0.45), Sakha101 with Sakha102 and Sakha106 (0.40), Sakha105 with Hybrid1 (0.40), Hybrid1 with Giza178 (0.40) and GZ1368-S-5-4 with Giza181 (0.40)) was also observed, which are also susceptible to drought stress. All genotypes are grouped into two major clusters in the dendrogram at 66% similarity based on Jaccard’s similarity index. The first cluster (A) was divided into two minor groups A1 and A2, in which A1 had two groups A1-1 and A1-2, containing drought-tolerant genotypes like IET1444, GZ1386-S-5-4 and Hybrid1. On the other hand, the A1-2 cluster divided into A1-2-1 containing Hybrid2 genotype and A1-2-2 containing Giza179 and Giza178 at coefficient 0.91, showing moderate tolerance to drought stress. The genotypes GZ1368-S-5-4, IET1444, Giza 178, and Giza179, could be included as appropriate materials for developing a drought-tolerant variety breeding program. Genetic diversity to grow new rice cultivars that combine drought tolerance with high grain yields is essential to maintaining food security.


2015 ◽  
Vol 50 (7) ◽  
pp. 534-540 ◽  
Author(s):  
Cleber Morais Guimarães ◽  
Luís Fernando Stone ◽  
Adriano Pereira de Castro ◽  
Odilon Peixoto de Morais Júnior

Abstract: The objective of this work was to evaluate the feasibility of using physiological parameters for water deficit tolerance, as an auxiliary method for selection of upland rice genotypes. Two experiments - with or without water deficit - were carried out in Porangatu, in the state of Goiás, Brazil; the water deficit experiment received about half of irrigation that was applied to the well-watered experiment. Four genotypes with different tolerance levels to water stress were evaluated. The UPLRI 7, B6144F-MR-6-0-0, and IR80312-6-B-3-2-B genotypes, under water stress conditions, during the day, showed lower stomatal diffusive resistance, higher leaf water potential, and lower leaf temperature than the control. These genotypes showed the highest grain yields under water stress conditions, which were 534, 601, and 636 kg ha-1, respectively, and did not differ significantly among them. They also showed lower drought susceptibility index than the other genotypes. 'BRS Soberana' (susceptible control) was totally unproductive under drought conditions. Leaf temperature is a easy-read parameter correlated to plant-water status, viable for selecting rice genotypes for water deficit tolerance.


2020 ◽  
Author(s):  
Soumya Kumar Sahoo ◽  
Goutam Kumar Dash ◽  
Arti Guhey ◽  
Mirza Jaynul Baig ◽  
Madhusmita Barik ◽  
...  

ABSTRACTRice production is severely threatened by drought stress in Eastern India. To develop drought tolerant varieties, selection of donors for breeding programme is crucial. Twenty one selected rice genotypes including both tolerant and sensitive to drought were grown under well-watered and drought stress conditions in dry seasons of two successive years of 2017 and 2018. Leaf water potential, relative water content displayed significant difference among the genotypes during vegetative screening. At reproductive stage drought screening, days to 50% flowering was delayed in all genotypes except N22 and Anjali (showed early flowering) however grain yield and other yield related traits decreased significantly compared to well watered condition. Correlation analysis of phenological and yield related traits with grain yield revealed that tiller numbers and panicle numbers are highly correlated with grain yield both under well-watered and water stress conditions and contributes maximum towards grain yield. The dendrogram grouped Mahamaya, Sahabhagidhan, Poornima, IBD 1, Hazaridhan, Samleshwari and Danteshwari into one cluster which performed better under water stress conditions and had grain yield more than 1.69 tha−1. Sahabhagidhan, Poornima, Vandana, and N22 displayed tolerance to drought both under vegetative and reproductive conditions which could be a good selection for the breeders to develop drought tolerant rice cultivars for eastern region of India.


Author(s):  
Slimani Afafe ◽  
Harkousse Oumaima ◽  
Mazri Mouaad Amine ◽  
Zouahri Abdelmajid ◽  
Ouahmane Lahcen ◽  
...  

Background: Plant strategies for adapting to drought could be improved by associations between plant roots and soil microorganisms, including arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR). In this study, the impact of a selected AMF complex and a selected PGPR species on the growth of tomato (Lycopersicum esculentum Mill.) under induced water stress was evaluated. Methods: Three different inoculation treatments were applied to tomato seedlings (a complex of AMF composed mainly of Glomus genus a Bacillus sp. PGPR treatment and a combination of both) and three different water levels (75%, 50% and 25% of field capacity). Result: A significant damaging impact of drought on tomato growth parameters and root mycorrhizal colonization, although the presence of microbes stimulated tomato plants growth and decreased the impact ofdrought stress. Indeed inoculated plants presented greater heights, fresh and dry weights, leaves number and area; greater water status; and greater proteins, sugars and chlorophylls contents either with the AMF complex or the Bacillus sp. in normal and drought stress conditions compared to the non-inoculated plants. However dual inoculation recorded the highest values under all water levels treatments.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Jinyoung Yang ◽  
Richard C. Sicher ◽  
Moon S. Kim ◽  
Vangimalla R. Reddy

Three maize genotypes were grown in controlled environment chambers with ambient (38 Pa) or elevated (70 Pa) carbon dioxide and water stress treatments were initiated 17 days after sowing. Shoot dry weight of the drought tolerant hybrid in both CO2 treatments was 44 to 73% less than that of the intermediate and sensitive hybrids when seedlings were well watered. Decreased shoot and root dry weights of the tolerant maize hybrid due to drought were about one-half that of the other two hybrids. Genotypic differences were observed in decreases of soil water content, leaf water potential, net photosynthesis and stomatal conductance in response to drought. Eleven of 19 amino acids measured in this study increased, methionine was unchanged and alanine and aspartate decreased in response to drought in the ambient CO2 treatment. Increased amino acid levels under elevated CO2 were observed at the end of the experiment. Significant genotypic differences were detected for amino acid responses to drought. Effects of drought on all three genotypes were mitigated by CO2 enrichment. Decreased shoot growth likely improved the stress tolerance of a highly drought resistant maize hybrid by reducing moisture loss, improving soil moisture content and increasing leaf water potential.


2021 ◽  
Vol 20 (4) ◽  
pp. 43-57
Author(s):  
Zahoor Ahmad ◽  
Ejaz Ahmad Warraich ◽  
Muhammad Aamir Iqbal ◽  
Celaleddin Barutçular ◽  
Hesham Alharby ◽  
...  

Silicon (Si) is one of the best plant defense elements against the biotic and abiotic stresses. Camelina plants accumulate Si which serves in protection against drought stress. The present study was conducted to investigate the impact of different doses of foliage applied Si (0, 3, 6 and 9 mM) under water stress (40% field capacity, FC) and non-stress conditions (100% FC) on camelina genotypes (Canadian and Australian). The imposed drought drastically decreased the growth parameters like root-shoot length and plant fresh and dry weight and also had negative impact on the chlorophyll content along with water relation attributes (water potential, osmotic potential and turgor pressure). In contrast, total free amino acids, total soluble proteins, proline and antioxidants such as ascorbic peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were enhanced especially in water stressed Canadian genotype, while osmoprotectants (flavonoids, anthocyanins and glycinebetaine) and phenolics contents were decreased. On the other hand, the foliar application of Si was instrumental in enhancing the growth of camelina by increasing the chlorophyll contents and water relation of stressed and non-stressed plants. Similarly, the biochemical, osmoprotectants and antioxidant metabolism was also improved in camelina stressed plants through the application of foliar Si. In conclusion, foliar application of 6 mM Si at vegetative growth stage played a vital role in alleviating the drastic impact of water stress on camelina growth by improving the water status, chlorophyll content, accumulation of phenolics and osmoprotectants and activating antioxidants. Therefore, the foliar application of Si could be developed as an important biologically viable strategy for boosting the tolerance in camelina plants to water stress conditions.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Sergio Tombesi ◽  
Tommaso Frioni ◽  
Francesca Grisafi ◽  
Paolo Sabbatini ◽  
Stefano Poni ◽  
...  

Dark respiration (Rd) is a fundamental plant process used to gain biomass and maintain plant physiological activity. It accounts for the metabolization of a large share of the carbon fixed by photosynthesis. However, Rd during conditions of severe plant water stress is still poorly understood. The decrease in leaf transpiration increases temperature, one of the most important drivers of leaf Rd. On the other hand, water stress decreases the pool of leaf carbohydrates, which are the most important substrate for respiration. The aim of the present work was to determine the impact of water shortage on leaf Rd in grapevine and understand the driving factors in modulating leaf Rd response under plant water stress conditions. Water stressed vines had lower Rd as the water shortage severity increased. Rd was correlated with leaf temperature in well-watered vines. Instead, in water stressed vines, Rd correlated with leaf soluble sugars. The decrease of leaf Rd in water stressed vines was due to the decrease of leaf non-structural carbohydrate that, under water stress conditions, exerted a limiting effect on Rd.


2013 ◽  
Vol 4 (8) ◽  
pp. 1235-1255
Author(s):  
H. Hassan ◽  
W. El-Khoby ◽  
A. El-Hissewy

Sign in / Sign up

Export Citation Format

Share Document