scholarly journals Commensal bacteria differentially shape the nutritional requirements of Drosophila during juvenile growth

2019 ◽  
Author(s):  
Jessika Consuegra ◽  
Théodore Grenier ◽  
Patrice Baa-Puyoulet ◽  
Isabelle Rahioui ◽  
Houssam Akherraz ◽  
...  

AbstractThe interplay between nutrition and the microbial communities colonizing the gastro-intestinal tract (i.e. gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how commensal bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with two model commensal bacterial strains, Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its two commensal bacteria. We first established that ApWJL and LpNC8 differentially fulfills the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients and trace metals. We found that Drosophila commensal bacteria not only fortify the host’s diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies, by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating and sparing contaminant traces of micronutrients. Our systematic work reveals that, beyond the molecular dialogue engaged between the host and its commensal partners, Drosophila and its facultative bacterial partners establish an integrated nutritional network relying on nutrients sparing and utilization.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasmina Ait Chait ◽  
Walid Mottawea ◽  
Thomas A. Tompkins ◽  
Riadh Hammami

Abstract Over the past decade, there has been increasing evidence highlighting the implication of the gut microbiota in a variety of brain disorders such as depression, anxiety, and schizophrenia. Studies have shown that depression affects the stability of gut microbiota, but the impact of antidepressant treatments on microbiota structure and metabolism remains underexplored. In this study, we investigated the in vitro antimicrobial activity of antidepressants from different therapeutic classes against representative strains of human gut microbiota. Six different antidepressants: phenelzine, venlafaxine, desipramine, bupropion, aripiprazole and (S)-citalopram have been tested for their antimicrobial activity against 12 commensal bacterial strains using agar well diffusion, microbroth dilution method, and colony counting. The data revealed an important antimicrobial activity (bacteriostatic or bactericidal) of different antidepressants against the tested strains, with desipramine and aripiprazole being the most inhibitory. Strains affiliating to most dominant phyla of human microbiota such as Akkermansia muciniphila, Bifidobacterium animalis and Bacteroides fragilis were significantly altered, with minimum inhibitory concentrations (MICs) ranged from 75 to 800 μg/mL. A significant reduction in bacterial viability was observed, reaching 5 logs cycle reductions with tested MICs ranged from 400 to 600 μg/mL. Our findings demonstrate that gut microbiota could be altered in response to antidepressant drugs.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 27 ◽  
Author(s):  
Rikard Landberg ◽  
Kati Hanhineva

Whole diets and dietary patterns are increasingly highlighted in modern nutrition and health research instead of single food items or nutrients alone. The Healthy Nordic Diet is a dietary pattern typically associated with beneficial health outcomes in observational studies, but results from randomized controlled trials are mixed. Dietary assessment is one of the greatest challenges in observational studies and compliance is a major challenge in dietary interventions. During the last decade, research has shown the great importance of the gut microbiota in health and disease. Studies have have both shown that the Nordic diet affects the gut microbiota and that the gut microbiota predicts the effects of such a diet. Rapid technique developments in the area of high-throughput mass spectrometry have enabled the large-scale use of metabolomics both as an objective measurement of dietary intake as well as in providing the final readout of the endogenous metabolic processes and the impact of the gut microbiota. In this review, we give an update on the current status on biomarkers that reflect a Healthy Nordic Diet or individual components thereof (food intake biomarkers), biomarkers that show the effects of a Healthy Nordic Diet and biomarkers reflecting the role of a Healthy Nordic Diet on the gut microbiota as well as how the gut microbiota or derived molecules may be used to predict the effects of a Healthy Nordic Diet on different outcomes.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1769 ◽  
Author(s):  
Jovana Knezevic ◽  
Christina Starchl ◽  
Adelina Tmava Berisha ◽  
Karin Amrein

A healthy gut microbiota not only has beneficial effects on the activity of the immune system, but also on thyroid function. Thyroid and intestinal diseases prevalently coexist—Hashimoto’s thyroiditis (HT) and Graves’ disease (GD) are the most common autoimmune thyroid diseases (AITD) and often co-occur with Celiac Disease (CD) and Non-celiac wheat sensitivity (NCWS). This can be explained by the damaged intestinal barrier and the following increase of intestinal permeability, allowing antigens to pass more easily and activate the immune system or cross-react with extraintestinal tissues, respectively. Dysbiosis has not only been found in AITDs, but has also been reported in thyroid carcinoma, in which an increased number of carcinogenic and inflammatory bacterial strains were observed. Additionally, the composition of the gut microbiota has an influence on the availability of essential micronutrients for the thyroid gland. Iodine, iron, and copper are crucial for thyroid hormone synthesis, selenium and zinc are needed for converting T4 to T3, and vitamin D assists in regulating the immune response. Those micronutrients are often found to be deficient in AITDs, resulting in malfunctioning of the thyroid. Bariatric surgery can lead to an inadequate absorption of these nutrients and further implicates changes in thyroid stimulating hormone (TSH) and T3 levels. Supplementation of probiotics showed beneficial effects on thyroid hormones and thyroid function in general. A literature research was performed to examine the interplay between gut microbiota and thyroid disorders that should be considered when treating patients suffering from thyroid diseases. Multifactorial therapeutic and preventive management strategies could be established and more specifically adjusted to patients, depending on their gut bacteria composition. Future well-powered human studies are warranted to evaluate the impact of alterations in gut microbiota on thyroid function and diseases.


2021 ◽  
Author(s):  
Daoming Wang ◽  
Marwah Doestzada ◽  
Lianmin Chen ◽  
Sergio Andreu-Sánchez ◽  
Inge C.L. van den Munckhof ◽  
...  

Bile acids (BAs) facilitate intestinal fat absorption and act as important signaling molecules in host-gut microbiota crosstalk. BA-metabolizing pathways in the microbial community have been identified, but how the highly variable genomes of gut bacteria interact with host BA metabolism remains largely unknown. We characterized 8,282 structural variants (SVs) of 55 bacterial species in the gut microbiomes of 1,437 individuals from two Dutch cohorts and performed a systematic association study with 39 plasma BA parameters. Both variations in SV-based continuous genetic makeup and discrete subspecies showed correlations with BA metabolism. Metagenome-wide association analysis identified 797 replicable associations between bacterial SVs and BAs and SV regulators that mediate the effects of lifestyle factors on BA metabolism. This is the first large-scale microbial genetic association analysis to demonstrate the impact of bacterial SVs on human BA composition, and highlights the potential of targeting gut microbiota to regulate BA metabolism through lifestyle intervention.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 79 ◽  
Author(s):  
Natasja Gianotten ◽  
Lise Soetemans ◽  
Leen Bastiaens

Insects are attracting increased attention in western countries as a protein source for feed and food industries. Currently, insect farmers use high-quality (cereal-based) diets. Part of the ingredients in these diets can also be used directly in food applications. To avoid competition and improve the sustainable and economical aspect of insect rearing, a search for alternative insect diets is ongoing. Side-streams from the agri-food sector offer potential. The lesser mealworm (Alphitobius diaperinus) is an insect that is commercially reared on large scale for food application. The current paper reports on six agri-food side-streams that were included in the diet of the lesser mealworm. The impact of 29 diets (single side-streams or mixtures) on the larvae growth was evaluated by monitoring the larval yield, efficiency of conversion of ingested feed, and larval weight. The larvae were able to grow on all diets, but differences in growth were observed. Two side-streams, wheat middlings and rapeseed meal, were proven to support good larval performance when used as a single ingredient. A combination of these two with brewery grains as moisture source provided (1) the best larval growth and (2) the most economically profitable diet. In conclusion, this study illustrates successful rearing of the lesser mealworm on side-stream-based diets.


2020 ◽  
Vol 12 (1) ◽  
pp. 345-366
Author(s):  
Christian Bommer ◽  
Nitya Mittal ◽  
Sebastian Vollmer

Despite growing policy commitment and decades of extensive research, nutritional deficiencies remain a key challenge for health systems worldwide. In addition to causing significant personal costs for those affected, indirect effects, such as reduced overall human capital accumulation or losses in labor productivity, can impose substantial obstacles for the achievement of economic development goals. This review provides an overview of the impact of key interventions aiming to improve nutritional intake in order to reach better physical health and cognitive outcomes among children in developing countries. We argue that, although promising interventions exist, malnutrition is a complex problem, likely requiring a stronger focus on multifactorial approaches. Moreover, more research is necessary to maximize compliance and sustainability if interventions are to successfully transform into large-scale policy programs. We further discuss the emerging double burden of malnutrition as a key challenge for policy makers in resource-poor settings.


2020 ◽  
Author(s):  
Jessika Consuegra ◽  
Théodore Grenier ◽  
Houssam Akherraz ◽  
Isabelle Rahioui ◽  
Hugo Gervais ◽  
...  

SUMMARYThe gut microbiota shapes animal growth trajectory in stressful nutritional environments, but the molecular mechanisms behind such physiological benefits remain poorly understood. The gut microbiota is mostly composed of bacteria, which construct metabolic networks among themselves and with the host. Until now, how the metabolic activities of the microbiota contribute to host juvenile growth remains unknown. Here, using Drosophila as a host model, we report that two of its major bacterial partners, Lactobacillus plantarum and Acetobacter pomorum engage in a beneficial metabolic dialogue that boosts host juvenile growth despite nutritional stress. We pinpoint that lactate, produced by L. plantarum, is utilized by A. pomorum as an additional carbon source, and A. pomorum provides essential amino-acids and vitamins to L. plantarum. Such bacterial cross-feeding provisions a set of anabolic metabolites to the host, which may foster host systemic growth despite poor nutrition.GRAPHICAL ABSTRACTHIGHLIGHTSL. plantarum feeds lactate to A. pomorumA. pomorum supplies essential amino acids and vitamins to L. plantarumMicrobiota metabolic dialogue boosts Drosophila’s larval growthLactate utilization by Acetobacter releases anabolic metabolites to larvae


2018 ◽  
Author(s):  
Sabrina Jabs ◽  
Christophe Becavin ◽  
Marie-Anne Nahori ◽  
Vincent Guerinau ◽  
David Touboul ◽  
...  

The intestinal microbiota modulates host physiology and gene expression via mechanisms that are not fully understood. A recently discovered layer of gene expression regulation is N6-methyladenosine (m6A) modification of mRNA. To unveil if this epitranscriptomic mark in part mediates the impact of the gut microbiota on the host, we analyzed m6A-modifications in transcripts of mice displaying either a conventional, or a modified, or no gut flora. We discovered that the microbiota has a strong influence on m6A-modifications in the cecum, and also, albeit to a lesser extent, in the liver. We furthermore show that a single commensal bacterium, Akkermansia muciniphila, can affect specific m6A modifications. Together, we report here epitranscriptomic modifications as an unexpected level of interaction in the complex interplay between commensal bacteria and their host.


2020 ◽  
Vol 59 (04) ◽  
pp. 294-299 ◽  
Author(s):  
Lutz S. Freudenberg ◽  
Ulf Dittmer ◽  
Ken Herrmann

Abstract Introduction Preparations of health systems to accommodate large number of severely ill COVID-19 patients in March/April 2020 has a significant impact on nuclear medicine departments. Materials and Methods A web-based questionnaire was designed to differentiate the impact of the pandemic on inpatient and outpatient nuclear medicine operations and on public versus private health systems, respectively. Questions were addressing the following issues: impact on nuclear medicine diagnostics and therapy, use of recommendations, personal protective equipment, and organizational adaptations. The survey was available for 6 days and closed on April 20, 2020. Results 113 complete responses were recorded. Nearly all participants (97 %) report a decline of nuclear medicine diagnostic procedures. The mean reduction in the last three weeks for PET/CT, scintigraphies of bone, myocardium, lung thyroid, sentinel lymph-node are –14.4 %, –47.2 %, –47.5 %, –40.7 %, –58.4 %, and –25.2 % respectively. Furthermore, 76 % of the participants report a reduction in therapies especially for benign thyroid disease (-41.8 %) and radiosynoviorthesis (–53.8 %) while tumor therapies remained mainly stable. 48 % of the participants report a shortage of personal protective equipment. Conclusions Nuclear medicine services are notably reduced 3 weeks after the SARS-CoV-2 pandemic reached Germany, Austria and Switzerland on a large scale. We must be aware that the current crisis will also have a significant economic impact on the healthcare system. As the survey cannot adapt to daily dynamic changes in priorities, it serves as a first snapshot requiring follow-up studies and comparisons with other countries and regions.


Sign in / Sign up

Export Citation Format

Share Document