scholarly journals Hormonal and neural correlates of care in active versus observing poison frog parents

2019 ◽  
Author(s):  
Eva K Fischer ◽  
Lauren A O'Connell

The occasional reversal of sex-typical behavior suggests that many of the neural circuits underlying behavior are conserved between males and females and can be activated in response to the appropriate social condition or stimulus. Most poison frog species (Family Dendrobatidae) exhibit male uniparental care, but flexible compensation has been observed in some species, where females will take over parental care duties when males disappear. We investigated hormonal and neural correlates of sex-typical and sex-reversed parental care in a typically male uniparental species, the Dyeing Poison Frog (Dendrobates tinctorius). We first characterized hormone levels and whole brain gene expression across parental care stages during sex-typical care. Surprisingly, hormonal changes and brain gene expression differences associated with active parental behavior in males were mirrored in their non-caregiving female partners. To further explore the disconnect between neuroendocrine patterns and behavior, we characterized hormone levels and neural activity patterns in females performing sex-reversed parental care. In contrast to hormone and gene expression patterns, we found that patterns of neural activity were linked to the active performance of parental behavior, with sex-reversed tadpole transporting females exhibiting neural activity patterns more similar to those of transporting males than non-caregiving females. We suggest that parallels in hormones and brain gene expression in active and observing parents are related to females ability to flexibly take over parental care in the absence of their male partners.

2014 ◽  
Vol 35 (9) ◽  
pp. 1961-1972 ◽  
Author(s):  
Nicole C. Berchtold ◽  
Marwan N. Sabbagh ◽  
Thomas G. Beach ◽  
Ronald C. Kim ◽  
David H. Cribbs ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jiacheng Dai ◽  
Yu Chen ◽  
Rujia Dai ◽  
Yi Jiang ◽  
Jianghua Tian ◽  
...  

Agonal factors, the conditions that occur just prior to death, can impact the molecular quality of postmortem brains, influencing gene expression results. Our study used gene expression data of 262 samples from ROSMAP with the detailed terminal state recorded for each donor, such as fever, infection, and unconsciousness. Fever and infection were the primary contributors to brain gene expression changes, brain cell-type-specific gene expression, and cell proportion changes. Furthermore, we also found that previous studies of gene expression in postmortem brains were confounded by agonal factors. Therefore, correction for agonal factors is important in the step of data preprocessing. Our analyses revealed fever and infection contributing to gene expression changes in postmortem brains and emphasized the necessity of study designs that document and account for agonal factors.


2019 ◽  
Author(s):  
Eviatar Yemini ◽  
Albert Lin ◽  
Amin Nejatbakhsh ◽  
Erdem Varol ◽  
Ruoxi Sun ◽  
...  

ABSTRACTComprehensively resolving single neurons and their cellular identities from whole-brain fluorescent images is a major challenge. We achieve this in C. elegans through the engineering and use of a multicolor transgene called NeuroPAL (a Neuronal Polychromatic Atlas of Landmarks). NeuroPAL worms share a stereotypical multicolor fluorescence map for the entire hermaphrodite nervous system that allows comprehensive determination of neuronal identities. Neurons labeled with NeuroPAL do not exhibit fluorescence in the green, cyan, or yellow emission channels, allowing the transgene to be used with numerous reporters of gene expression or neuronal dynamics. Here we showcase three studies that leverage NeuroPAL for nervous-system-wide neuronal identification. First, we determine the brainwide expression patterns of all metabotropic receptors for acetylcholine, GABA, and glutamate, completing a map of this communication network. Second, we uncover novel changes in cell fate caused by transcription factor mutations. Third, we record brainwide activity in response to attractive and repulsive chemosensory cues, characterizing multimodal coding and novel neuronal asymmetries for these stimuli. We present a software package that enables semi-automated determination of all neuronal identities based on color and positional information. The NeuroPAL framework and software provide a means to design landmark atlases for other tissues and organisms. In conclusion, we expect NeuroPAL to serve as an invaluable tool for gene expression analysis, neuronal fate studies, and for mapping whole-brain activity patterns.


2016 ◽  
Author(s):  
Shahar Shohat ◽  
Eyal Ben-David ◽  
Sagiv Shifman

AbstractGenetic susceptibility to Intellectual disability (ID), autism spectrum disorder (ASD) and schizophrenia (SCZ) often arises from mutations in the same genes, suggesting that they share common mechanisms. We studied genes with de novo mutations in the three disorders and genes implicated by SCZ genome-wide association study (GWAS). Using biological annotations and brain gene expression, we show that mutation class explains enrichment patterns more than specific disorder. Genes with loss of function mutations and genes with missense mutations were enriched with different pathways, shared with genes intolerant to mutations. Specific gene expression patterns were found for each disorder. ID genes were preferentially expressed in fetal cortex, ASD genes also in fetal cerebellum and striatum, and genes associated with SCZ were most significantly enriched in adolescent cortex. Our study suggests that convergence across neuropsychiatric disorders stems from vulnerable pathways to genetic variations, but spatiotemporal activity of genes contributes to specific phenotypes.


2021 ◽  
Author(s):  
Jonathan W Villanueva ◽  
Lawrence Kwong ◽  
Teng Han ◽  
Salvador Alonso Martinez ◽  
Fong Cheng Pan ◽  
...  

Somatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify ten different modules of microRNA expression patterns across distinct combinations of mutations common in CRC. We also show that miR-24-3p, which is aberrant in genetically-modified mouse enteroids and human colonoids irrespective of mutational context, is a master regulator of gene expression in CRC. In follow-up experiments, we also demonstrate that miR-24 promotes CRC cell survival. These findings offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.


2020 ◽  
Vol 117 (13) ◽  
pp. 7437-7446 ◽  
Author(s):  
Gaëtan Sanchez ◽  
Thomas Hartmann ◽  
Marco Fuscà ◽  
Gianpaolo Demarchi ◽  
Nathan Weisz

An increasing number of studies highlight common brain regions and processes in mediating conscious sensory experience. While most studies have been performed in the visual modality, it is implicitly assumed that similar processes are involved in other sensory modalities. However, the existence of supramodal neural processes related to conscious perception has not been convincingly shown so far. Here, we aim to directly address this issue by investigating whether neural correlates of conscious perception in one modality can predict conscious perception in a different modality. In two separate experiments, we presented participants with successive blocks of near-threshold tasks involving subjective reports of tactile, visual, or auditory stimuli during the same magnetoencephalography (MEG) acquisition. Using decoding analysis in the poststimulus period between sensory modalities, our first experiment uncovered supramodal spatiotemporal neural activity patterns predicting conscious perception of the feeble stimulation. Strikingly, these supramodal patterns included activity in primary sensory regions not directly relevant to the task (e.g., neural activity in visual cortex predicting conscious perception of auditory near-threshold stimulation). We carefully replicate our results in a control experiment that furthermore show that the relevant patterns are independent of the type of report (i.e., whether conscious perception was reported by pressing or withholding a button press). Using standard paradigms for probing neural correlates of conscious perception, our findings reveal a common signature of conscious access across sensory modalities and illustrate the temporally late and widespread broadcasting of neural representations, even into task-unrelated primary sensory processing regions.


2005 ◽  
Vol 102 (29) ◽  
pp. 10357-10362 ◽  
Author(s):  
M. A. Zapala ◽  
I. Hovatta ◽  
J. A. Ellison ◽  
L. Wodicka ◽  
J. A. Del Rio ◽  
...  

2017 ◽  
Author(s):  
Gaëtan Sanchez ◽  
Thomas Hartmann ◽  
Marco Fuscà ◽  
Gianpaolo Demarchi ◽  
Nathan Weisz

AbstractAn increasing number of studies highlight common brain regions and processes in mediating conscious sensory experience. While most studies have been performed in the visual modality, it is implicitly assumed that similar processes are involved in other sensory modalities. However, the existence of supramodal neural processes related to conscious perception has not been convincingly shown so far. Here, we aim to directly address this issue by investigating whether neural correlates of conscious perception in one modality can predict conscious perception in a different modality. In two separate experiments, we presented participants with successive blocks of near-threshold tasks involving tactile, visual or auditory stimuli during the same magnetoencephalography (MEG) acquisition. Using decoding analysis in the post-stimulus period between sensory modalities, our first experiment uncovered supramodal spatio-temporal neural activity patterns predicting conscious perception of the feeble stimulation. Strikingly, these supramodal patterns included activity in primary sensory regions not directly relevant to the task (e.g. neural activity in visual cortex predicting conscious perception of auditory near-threshold stimulation). We carefully replicate our results in a control experiment that furthermore show that the relevant patterns are independent of the type of report (i.e. whether conscious perception was reported by pressing or withholding a button-press). Using standard paradigms for probing neural correlates of conscious perception, our findings reveal a common signature of conscious access across sensory modalities and illustrate the temporally late and widespread broadcasting of neural representations, even into task-unrelated primary sensory processing regions.


Author(s):  
Priscila Santos ◽  
Jesse Starkey ◽  
David Galbraith ◽  
Etya Amsalem

Worker reproduction in social insects is often regulated by the queen, but can be regulated by the brood and nestmates, who may use different mechanisms to induce the same outcomes in subordinates. Analysis of brain gene expression patterns in bumble bee workers (Bombus impatiens) in response to the presence of the queen, the brood, both or neither, identified 18 differentially expressed genes, 17 of them are regulated by the queen and none are regulated by the brood. Overall, brain gene expression differences in workers were driven by the queen’s presence, despite recent studies showing that brood reduces worker egg laying and provides context to the queen pheromones. The queen affected important regulators of reproduction and brood care across insects, such as neuroparsin and vitellogenin, and a comparison with similar datasets in the honey bee and the clonal raider ant revealed that neuroparsin is differentially expressed in all species. These data emphasize the prominent role of the queen in regulating worker physiology and behavior. Genes that serve as key regulators of workers’ reproduction are likely to play an important role in the evolution of sociality.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Frances F. Hsieh ◽  
Ilya Korsunsky ◽  
Andrew J. Shih ◽  
Matthew A. Moss ◽  
Prodyot K. Chatterjee ◽  
...  

Abstract Objectives Oxytocin (OXT) is widely used to facilitate labor. However, little is known about the effects of perinatal OXT exposure on the developing brain. We investigated the effects of maternal OXT administration on gene expression in perinatal mouse brains. Methods Pregnant C57BL/6 mice were treated with saline or OXT at term (n=6–7/group). Dams and pups were euthanized on gestational day (GD) 18.5 after delivery by C-section. Another set of dams was treated with saline or OXT (n=6–7/group) and allowed to deliver naturally; pups were euthanized on postnatal day 9 (PND9). Perinatal/neonatal brain gene expression was determined using Illumina BeadChip Arrays and real time quantitative PCR. Differential gene expression analyses were performed. In addition, the effect of OXT on neurite outgrowth was assessed using PC12 cells. Results Distinct and sex-specific gene expression patterns were identified in offspring brains following maternal OXT administration at term. The microarray data showed that female GD18.5 brains exhibited more differential changes in gene expression compared to male GD18.5 brains. Specifically, Cnot4 and Frmd4a were significantly reduced by OXT exposure in male and female GD18.5 brains, whereas Mtap1b, Srsf11, and Syn2 were significantly reduced only in female GD18.5 brains. No significant microarray differences were observed in PND9 brains. By quantitative PCR, OXT exposure reduced Oxtr expression in female and male brains on GD18.5 and PND9, respectively. PC12 cell differentiation assays revealed that OXT induced neurite outgrowth. Conclusions Prenatal OXT exposure induces sex-specific differential regulation of several nervous system-related genes and pathways with important neural functions in perinatal brains.


Sign in / Sign up

Export Citation Format

Share Document