scholarly journals Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers

2019 ◽  
Author(s):  
David Heckmann ◽  
Anaamika Campeau ◽  
Colton J. Lloyd ◽  
Patrick Phaneuf ◽  
Ying Hefner ◽  
...  

AbstractEnzyme turnover numbers (kcats) are essential for a quantitative understanding of cells. Because kcats are traditionally measured in low-throughput assays, they are often noisy, non-physiological, inconsistent, and labor-intensive to obtain.We use a data-driven approach to estimate in vivo kcats using metabolic specialist E. coli strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution. By combining absolute proteomics with fluxomics data, we find that in vivo kcats are robust against genetic perturbations, suggesting that metabolic adaptation to gene loss is mostly achieved through other mechanisms, like gene-regulatory changes. Combining machine learning and genome-scale metabolic models, we show that the obtained in vivo kcats predict unseen proteomics data with much higher precision than in vitro kcats. The results demonstrate that in vivo kcats can solve the problem of noisy and inconsistent parameterizations of cellular models.

2020 ◽  
Vol 117 (37) ◽  
pp. 23182-23190 ◽  
Author(s):  
David Heckmann ◽  
Anaamika Campeau ◽  
Colton J. Lloyd ◽  
Patrick V. Phaneuf ◽  
Ying Hefner ◽  
...  

Enzyme turnover numbers (kcats) are essential for a quantitative understanding of cells. Because kcats are traditionally measured in low-throughput assays, they can be inconsistent, labor-intensive to obtain, and can miss in vivo effects. We use a data-driven approach to estimate in vivo kcats using metabolic specialist Escherichia coli strains that resulted from gene knockouts in central metabolism followed by metabolic optimization via laboratory evolution. By combining absolute proteomics with fluxomics data, we find that in vivo kcats are robust against genetic perturbations, suggesting that metabolic adaptation to gene loss is mostly achieved through other mechanisms, like gene-regulatory changes. Combining machine learning and genome-scale metabolic models, we show that the obtained in vivo kcats predict unseen proteomics data with much higher precision than in vitro kcats. The results demonstrate that in vivo kcats can solve the problem of inconsistent and low-coverage parameterizations of genome-scale cellular models.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nathan Jeger-Madiot ◽  
Lousineh Arakelian ◽  
Niclas Setterblad ◽  
Patrick Bruneval ◽  
Mauricio Hoyos ◽  
...  

AbstractIn recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Michael L. Kamradt ◽  
Ji-Ung Jung ◽  
Kathryn M. Pflug ◽  
Dong W. Lee ◽  
Victor Fanniel ◽  
...  

AbstractCancers, including glioblastoma multiforme (GBM), undergo coordinated reprogramming of metabolic pathways that control glycolysis and oxidative phosphorylation (OXPHOS) to promote tumor growth in diverse tumor microenvironments. Adaptation to limited nutrient availability in the microenvironment is associated with remodeling of mitochondrial morphology and bioenergetic capacity. We recently demonstrated that NF-κB-inducing kinase (NIK) regulates mitochondrial morphology to promote GBM cell invasion. Here, we show that NIK is recruited to the outer membrane of dividing mitochondria with the master fission regulator, Dynamin-related protein1 (DRP1). Moreover, glucose deprivation-mediated metabolic shift to OXPHOS increases fission and mitochondrial localization of both NIK and DRP1. NIK deficiency results in decreased mitochondrial respiration, ATP production, and spare respiratory capacity (SRC), a critical measure of mitochondrial fitness. Although IκB kinase α and β (IKKα/β) and NIK are required for OXPHOS in high glucose media, only NIK is required to increase SRC under glucose deprivation. Consistent with an IKK-independent role for NIK in regulating metabolism, we show that NIK phosphorylates DRP1-S616 in vitro and in vivo. Notably, a constitutively active DRP1-S616E mutant rescues oxidative metabolism, invasiveness, and tumorigenic potential in NIK−/− cells without inducing IKK. Thus, we establish that NIK is critical for bioenergetic stress responses to promote GBM cell pathogenesis independently of IKK. Our data suggest that targeting NIK may be used to exploit metabolic vulnerabilities and improve therapeutic strategies for GBM.


2019 ◽  
Vol 12 (583) ◽  
pp. eaaw9450 ◽  
Author(s):  
Kevin Lou ◽  
Veronica Steri ◽  
Alex Y. Ge ◽  
Y. Christina Hwang ◽  
Christopher H. Yogodzinski ◽  
...  

Inhibitors targeting KRASG12C, a mutant form of the guanosine triphosphatase (GTPase) KRAS, are a promising new class of oncogene-specific therapeutics for the treatment of tumors driven by the mutant protein. These inhibitors react with the mutant cysteine residue by binding covalently to the switch-II pocket (S-IIP) that is present only in the inactive guanosine diphosphate (GDP)–bound form of KRASG12C, sparing the wild-type protein. We used a genome-scale CRISPR interference (CRISPRi) functional genomics platform to systematically identify genetic interactions with a KRASG12C inhibitor in cellular models of KRASG12C mutant lung and pancreatic cancer. Our data revealed genes that were selectively essential in this oncogenic driver–limited cell state, meaning that their loss enhanced cellular susceptibility to direct KRASG12C inhibition. We termed such genes “collateral dependencies” (CDs) and identified two classes of combination therapies targeting these CDs that increased KRASG12C target engagement or blocked residual survival pathways in cells and in vivo. From our findings, we propose a framework for assessing genetic dependencies induced by oncogene inhibition.


Diabetologia ◽  
2020 ◽  
Vol 63 (10) ◽  
pp. 1974-1980
Author(s):  
Rachel E. Jennings ◽  
Raphael Scharfmann ◽  
Willem Staels

Abstract Improving our understanding of mammalian pancreas development is crucial for the development of more effective cellular therapies for diabetes. Most of what we know about mammalian pancreas development stems from mouse genetics. We have learnt that a unique set of transcription factors controls endocrine and exocrine cell differentiation. Transgenic mouse models have been instrumental in studying the function of these transcription factors. Mouse and human pancreas development are very similar in many respects, but the devil is in the detail. To unravel human pancreas development in greater detail, in vitro cellular models (including directed differentiation of stem cells, human beta cell lines and human pancreatic organoids) are used; however, in vivo validation of these results is still needed. The current best ‘model’ for studying human pancreas development are individuals with monogenic forms of diabetes. In this review, we discuss mammalian pancreas development, highlight some discrepancies between mouse and human, and discuss selected transcription factors that, when mutated, cause permanent neonatal diabetes.


2019 ◽  
Vol 31 (1) ◽  
pp. 118-138 ◽  
Author(s):  
Sébastien J. Dumas ◽  
Elda Meta ◽  
Mila Borri ◽  
Jermaine Goveia ◽  
Katerina Rohlenova ◽  
...  

BackgroundRenal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown.MethodsWe inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing >40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phosphorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo.ResultsWe identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting extensive heterogeneity of these cells between and within the cortex, glomeruli, and medulla. In response to dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes involved in the hypoxia response, glycolysis, and—surprisingly—oxidative phosphorylation. Endothelial cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine concentration during dehydration.ConclusionsThis study provides a high-resolution atlas of the renal endothelium and highlights extensive renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2213
Author(s):  
Laure Villemain ◽  
Sylvie Prigent ◽  
Aurélie Abou-Lovergne ◽  
Laura Pelletier ◽  
Magali Chiral ◽  
...  

Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.


2017 ◽  
Vol 312 (4) ◽  
pp. H854-H866 ◽  
Author(s):  
Jaimit Parikh ◽  
Adam Kapela ◽  
Nikolaos M. Tsoukias

We used mathematical modeling to investigate nitric oxide (NO)-dependent vasodilatory signaling in the arteriolar wall. Detailed continuum cellular models of calcium (Ca2+) dynamics and membrane electrophysiology in smooth muscle and endothelial cells (EC) were coupled with models of NO signaling and biotransport in an arteriole. We used this theoretical approach to examine the role of endothelial hemoglobin-α (Hbα) as a modulator of NO-mediated myoendothelial feedback, as previously suggested in Straub et al. ( Nature 491: 473–477, 2012). The model considers enriched expression of inositol 1,4,5-triphosphate receptors (IP3Rs), endothelial nitric oxide synthase (eNOS) enzyme, Ca2+-activated potassium (KCa) channels and Hbα in myoendothelial projections (MPs) between the two cell layers. The model suggests that NO-mediated myoendothelial feedback is plausible if a significant percentage of eNOS is localized within or near the myoendothelial projection. Model results show that the ability of Hbα to regulate the myoendothelial feedback is conditional to its colocalization with eNOS near MPs at concentrations in the high nanomolar range (>0.2 μM or 24,000 molecules). Simulations also show that the effect of Hbα observed in in vitro experimental studies may overestimate its contribution in vivo, in the presence of blood perfusion. Thus, additional experimentation is required to quantify the presence and spatial distribution of Hbα in the EC, as well as to test that the strong effect of Hbα on NO signaling seen in vitro, translates also into a physiologically relevant response in vivo. NEW & NOTEWORTHY Mathematical modeling shows that although regulation of nitric oxide signaling by hemoglobin-α (Hbα) is plausible, it is conditional to its presence in significant concentrations colocalized with endothelial nitric oxide synthase in myoendothelial projections. Additional experimentation is required to test that the strong effect of Hbα seen in vitro translates into a physiologically relevant response in vivo


Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1650
Author(s):  
Selvi C. Ersoy ◽  
Blake M. Hanson ◽  
Richard A. Proctor ◽  
Cesar A. Arias ◽  
Truc T. Tran ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) infections represent a difficult clinical treatment issue. Recently, a novel phenotype was discovered amongst selected MRSA which exhibited enhanced β-lactam susceptibility in vitro in the presence of NaHCO3 (termed ‘NaHCO3-responsiveness’). This increased β-lactam susceptibility phenotype has been verified in both ex vivo and in vivo models. Mechanistic studies to-date have implicated NaHCO3-mediated repression of genes involved in the production, as well as maturation, of the alternative penicillin-binding protein (PBP) 2a, a necessary component of MRSA β-lactam resistance. Herein, we utilized RNA-sequencing (RNA-seq) to identify genes that were differentially expressed in NaHCO3-responsive (MRSA 11/11) vs. non-responsive (COL) strains, in the presence vs. absence of NaHCO3-β-lactam co-exposures. These investigations revealed that NaHCO3 selectively repressed the expression of a cadre of genes in strain 11/11 known to be a part of the sigB-sarA-agr regulon, as well as a number of genes involved in the anchoring of cell wall proteins in MRSA. Moreover, several genes related to autolysis, cell division, and cell wall biosynthesis/remodeling, were also selectively impacted by NaHCO3-OXA exposure in the NaHCO3-responsive strain MRSA 11/11. These outcomes provide an important framework for further studies to mechanistically verify the functional relevance of these genetic perturbations to the NaHCO3-responsiveness phenotype in MRSA.


Sign in / Sign up

Export Citation Format

Share Document