scholarly journals Sigma 1 Receptor is Overexpressed in Hepatocellular Adenoma: Involvement of ERα and HNF1α

Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2213
Author(s):  
Laure Villemain ◽  
Sylvie Prigent ◽  
Aurélie Abou-Lovergne ◽  
Laura Pelletier ◽  
Magali Chiral ◽  
...  

Sigma receptor 1 (SigR1) is an endoplasmic reticulum resident integral membrane protein whose functions remain unclear. Although the liver shows the highest expression of SigR1, its role in this organ is unknown. SigR1 is overexpressed in many cancers and its expression is correlated to hormonal status in hormone-dependent cancers. To better understand the role of SigR1 in hepatocytes we focused our work on the regulation of its expression in tumoral liver. In this context, hepatocellular adenomas, benign hepatic tumors associated with estrogen intake are of particular interest. The expression of SigR1 mRNA was assessed in hepatocellular adenoma (HCA) patients using qPCR. The impact of estrogen on the expression of SigR1 was studied in vivo (mice) and in vitro (HepG2 and Huh7 cells). The effect of HNF1α on the expression of SigR1 was studied in vivo by comparing wild type mice to HNF1 knockout mice. Estrogen enhanced SigR1 expression through its nuclear receptor ERα. HNF1α mutated HCA (H-HCA) significantly overexpressed SigR1 compared to all other HCA subtypes. HNF1 knockout mice showed an increase in SigR1 expression. Overexpressing SigR1 in cellular models increases proliferation rate and storage of lipid droplets, which phenocopies the H-HCA phenotype. SigR1 is involved in hepatocyte proliferation and steatosis and may play an important role in the control of the H-HCA phenotype.

2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jean-Philippe Guégan ◽  
Christophe Frémin ◽  
Georges Baffet

Primary cultures of hepatocytes are powerful models in studying the sequence of events that are necessary for cell progression from a G0-like state to S phase. The models mimic the physiological process of hepatic regeneration after liver injury or partial hepatectomy. Many reports suggest that the mitogen-activated protein kinase (MAPK) ERK1/2 can support hepatocyte proliferationin vitroandin vivoand the MEK/ERK cascade acts as an essential element in hepatocyte responses induced by the EGF. Moreover, its disregulation has been associated with the promotion of tumor cell growth of a variety of tumors, including hepatocellular carcinoma. Whereas the strict specificity of action of ERK1 and ERK2 is still debated, the MAPKs may have specific biological functions under certain contexts and according to the differentiation status of the cells, notably hepatocytes. In this paper, we will focus on MEK1/2-ERK1/2 activations and roles in normal rodent hepatocytesin vitroand in vivo after partial hepatectomy and in human hepatocarcinoma cells. The possible specificity of ERK1 and ERK2 in normal and transformed hepatocyte will be discussed in regard to other differentiated and undifferentiated cellular models.


2016 ◽  
Vol 82 (6) ◽  
pp. 1722-1733 ◽  
Author(s):  
Elodie Neau ◽  
Johanne Delannoy ◽  
Candice Marion ◽  
Charles-Henry Cottart ◽  
Chantal Labellie ◽  
...  

ABSTRACTFood allergies can have significant effects on morbidity and on quality of life. Therefore, the development of efficient approaches to reduce the risk of developing food allergies is of considerable interest. The aim of this study was to identify and select probiotic strains with preventive properties against allergies using a combination ofin vitroandin vivoapproaches. To that end, 31 strains of bifidobacteria and lactic acid bacteria were screened for their immunomodulatory properties in two cellular models, namely, human peripheral blood mononuclear cells (PBMCs) and T helper 2 (Th2)-skewed murine splenocytes. Six strains inducing a high interleukin-10 (IL-10)/IL-12p70 ratio and a low secretion of IL-4 on the two cellular models were selected, and their protective impact was testedin vivoin a murine model of food allergy to β-lactoglobulin. Three strains showed a protective impact on sensitization, with a decrease in allergen-specific IgE, and on allergy, with a decrease in mast cell degranulation. Analysis of the impact of these three strains on the T helper balance revealed different mechanisms of action. TheLactobacillus salivariusLA307 strain proved to block Th1 and Th2 responses, while theBifidobacterium longumsubsp.infantisLA308 strain induced a pro-Th1 profile and theLactobacillus rhamnosusLA305 strain induced pro-Th1 and regulatory responses. These results demonstrate that a combination ofin vitroandin vivoscreening is effective in probiotic strain selection and allowed identification of three novel probiotic strains that are active against sensitization in mice.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250856
Author(s):  
Takumi Mikawa ◽  
Eri Shibata ◽  
Midori Shimada ◽  
Ken Ito ◽  
Tomiko Ito ◽  
...  

Glycolytic metabolism is closely involved in physiological homeostasis and pathophysiological states. Among glycolytic enzymes, phosphoglycerate mutase (PGAM) has been reported to exert certain physiological role in vitro, whereas its impact on glucose metabolism in vivo remains unclear. Here, we report the characterization of Pgam1 knockout mice. We observed that homozygous knockout mice of Pgam1 were embryonic lethal. Although we previously reported that both PGAM-1 and -2 affect global glycolytic profile of cancers in vitro, in vivo glucose parameters were less affected both in the heterozygous knockout of Pgam1 and in Pgam2 transgenic mice. Thus, the impact of PGAM on in vivo glucose metabolism is rather complex than expected before.


2021 ◽  
Author(s):  
Bryan Ng ◽  
Helen Rowland ◽  
Tina Wei ◽  
Kanisa Arunasalam ◽  
Emma Mee Hayes ◽  
...  

Modelling sporadic Alzheimer′s disease (sAD) with patient-derived induced pluripotent stem cells (iPSCs) is challenging yet remains an important step in understanding the disease. Here we report a novel approach of sAD modelling with patient iPSC-derived neurons by integrating cellular and clinical phenotypes from individual early symptomatic sAD patients. We establish a correlation between cellular vulnerability to extrinsic amyloid-beta in vitro measured by synapse loss with clinical vulnerability to amyloid-beta burden in vivo measured by cognitive decline and brain activity levels. Our findings indicate that patient iPSC-derived neurons not only preserve some pathological phenotypes of disease measured in the people they were derived from, but also preserve, from people to cells, the impact of those pathological phenotypes on function. Cellular models that reflect an individual′s in-life clinical vulnerability thus represent a tractable method of sAD modelling using clinical data in combination with cellular phenotypes.


2007 ◽  
Vol 114 (1) ◽  
pp. 73-83 ◽  
Author(s):  
Alain da Silva Morais ◽  
Alain Saliez ◽  
Isabelle Leclercq ◽  
Yves Horsmans ◽  
Peter Stärkel

Ras oncoproteins are probably implicated in normal and malignant cell growth in various organs. Inhibition of Ras interferes with cell proliferation of non-hepatic cells in vitro and in vivo. A potential role for Ras in normal and malignant hepatocyte proliferation prompted us to evaluate the impact of Ras inhibition by FTS (S-farnesylthiosalicylic acid) on hepatocyte proliferation in vitro in the human hepatic tumour cell line HepG2 and in vivo after PH (partial hepatectomy) in rats. Rats were administered with FTS intraperitoneally (1, 8 and 16 h after PH) and killed 12, 24 and 48 h after PH. Cell proliferation, phosphorlyation of members of the MAPK (mitogen-activated protein kinase) pathway and levels and activity of cell cycle effectors (cyclin D, cyclin E, Cdk2 and Cdk4) were assessed in FTS-treated rats compared with controls. FTS significantly decreased overall cell count, PCNA (proliferating-cell nuclear antigen) expression and BrdU (bromodeoxyuridine) incorporation into HepG2 cells after 7 days of culture. FTS treatment significantly reduced BrdU incorporation and PCNA expression in hepatocytes after PH. Unlike control rats, cell-membrane expression of Ras was decreased in FTS-treated animals after PH, resulting in decreased Raf membrane recruitment and phosphorylation and in reduced phosphorylation of ERK1/2 (extracellular-signal-regulated kinase 1/2). The antiproliferative effect of FTS was linked to a decrease in expression and activity of the cyclin E/Cdk2 complex, without affecting cyclin D and Cdk4. Ras inhibition by FTS significantly decreased proliferation of HepG2 cells and normal hepatocytes after a strong and highly synchronized proliferation stimulus elicited by PH. The inhibitory effect was at least partially mediated by inhibition of Ras/Raf/MAPK signalling. It appears worthwhile to evaluate the impact of Ras inhibition on the development of hepatocarcinomas in vivo in adequate animal models.


2013 ◽  
Vol 150 (3) ◽  
pp. 1024-1031 ◽  
Author(s):  
Mohammad Hossein Boskabady ◽  
Sakine Shahmohammadi Mehrjardi ◽  
Abadorrahim Rezaee ◽  
Houshang Rafatpanah ◽  
Sediqeh Jalali

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroaki Kanzaki ◽  
Tetsuhiro Chiba ◽  
Junjie Ao ◽  
Keisuke Koroki ◽  
Kengo Kanayama ◽  
...  

AbstractFGF19/FGFR4 autocrine signaling is one of the main targets for multi-kinase inhibitors (MKIs). However, the molecular mechanisms underlying FGF19/FGFR4 signaling in the antitumor effects to MKIs in hepatocellular carcinoma (HCC) remain unclear. In this study, the impact of FGFR4/ERK signaling inhibition on HCC following MKI treatment was analyzed in vitro and in vivo assays. Serum FGF19 in HCC patients treated using MKIs, such as sorafenib (n = 173) and lenvatinib (n = 40), was measured by enzyme-linked immunosorbent assay. Lenvatinib strongly inhibited the phosphorylation of FRS2 and ERK, the downstream signaling molecules of FGFR4, compared with sorafenib and regorafenib. Additional use of a selective FGFR4 inhibitor with sorafenib further suppressed FGFR4/ERK signaling and synergistically inhibited HCC cell growth in culture and xenograft subcutaneous tumors. Although serum FGF19high (n = 68) patients treated using sorafenib exhibited a significantly shorter progression-free survival and overall survival than FGF19low (n = 105) patients, there were no significant differences between FGF19high (n = 21) and FGF19low (n = 19) patients treated using lenvatinib. In conclusion, robust inhibition of FGF19/FGFR4 is of importance for the exertion of antitumor effects of MKIs. Serum FGF19 levels may function as a predictive marker for drug response and survival in HCC patients treated using sorafenib.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 930
Author(s):  
Donatella Delle Cave ◽  
Riccardo Rizzo ◽  
Bruno Sainz ◽  
Giuseppe Gigli ◽  
Loretta L. del Mercato ◽  
...  

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1414
Author(s):  
Josep M. Cambra ◽  
Emilio A. Martinez ◽  
Heriberto Rodriguez-Martinez ◽  
Maria A. Gil ◽  
Cristina Cuello

The development of chemically defined media is a growing trend in in vitro embryo production (IVP). Recently, traditional undefined culture medium with bovine serum albumin (BSA) has been successfully replaced by a chemically defined medium using substances with embryotrophic properties such as platelet factor 4 (PF4). Although the use of this medium sustains IVP, the impact of defined media on the embryonic transcriptome has not been fully elucidated. This study analyzed the transcriptome of porcine IVP blastocysts, cultured in defined (PF4 group) and undefined media (BSA group) by microarrays. In vivo-derived blastocysts (IVV group) were used as a standard of maximum embryo quality. The results showed no differentially expressed genes (DEG) between the PF4 and BSA groups. However, a total of 2780 and 2577 DEGs were detected when comparing the PF4 or the BSA group with the IVV group, respectively. Most of these genes were common in both in vitro groups (2132) and present in some enriched pathways, such as cell cycle, lysosome and/or metabolic pathways. These results show that IVP conditions strongly affect embryo transcriptome and that the defined culture medium with PF4 is a guaranteed replacement for traditional culture with BSA.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 11-26
Author(s):  
Maike Busch ◽  
Natalia Miroschnikov ◽  
Jaroslaw Thomas Dankert ◽  
Marc Wiesehöfer ◽  
Klaus Metz ◽  
...  

BACKGROUND: Retinoblastoma (RB) is the most common childhood eye cancer. Chemotherapeutic drugs such as etoposide used in RB treatment often cause massive side effects and acquired drug resistances. Dysregulated genes and miRNAs have a large impact on cancer progression and development of chemotherapy resistances. OBJECTIVE: This study was designed to investigate the involvement of retinoic acid receptor alpha (RARα) in RB progression and chemoresistance as well as the impact of miR-138, a potential RARα regulating miRNA. METHODS: RARα and miR-138 expression in etoposide resistant RB cell lines and chemotherapy treated patient tumors compared to non-treated tumors was revealed by Real-Time PCR. Overexpression approaches were performed to analyze the effects of RARα on RB cell viability, apoptosis, proliferation and tumorigenesis. Besides, we addressed the effect of miR-138 overexpression on RB cell chemotherapy resistance. RESULTS: A binding between miR-138 and RARα was shown by dual luciferase reporter gene assay. The study presented revealed that RARα is downregulated in etoposide resistant RB cells, while miR-138 is endogenously upregulated. Opposing RARα and miR-138 expression levels were detectable in chemotherapy pre-treated compared to non-treated RB tumor specimen. Overexpression of RARα increases apoptosis levels and reduces tumor cell growth of aggressive etoposide resistant RB cells in vitro and in vivo. Overexpression of miR-138 in chemo-sensitive RB cell lines partly enhances cell viability after etoposide treatment. CONCLUSIONS: Our findings show that RARα acts as a tumor suppressor in retinoblastoma and is downregulated upon etoposide resistance in RB cells. Thus, RARα may contribute to the development and progression of RB chemo-resistance.


Sign in / Sign up

Export Citation Format

Share Document