scholarly journals Heat shock response pathways regulate stimulus-specificity and sensitivity of NF-κB signalling to temperature stress

2019 ◽  
Author(s):  
Anna Paszek ◽  
Małgorzata Kardyńska ◽  
James Bagnall ◽  
Jarosław Śmieja ◽  
David G. Spiller ◽  
...  

AbstractAbility to adapt to temperature changes trough the Heat Shock Response (HSR) pathways is one of the most fundamental and clinically relevant cellular response systems. Here we report that Heat Shock (HS) induces a temporally-coordinated and stimulus-specific adaptation of the signalling and gene expression responses of the Nuclear Factor κB (NF-κB) transcription factor. We show that exposure of MCF7 breast adenocarcinoma cells to 43°C 1h HS inhibits the immediate signalling response to pro-inflammatory Interleukin 1β (IL1β) and Tumour Necrosis Factor α (TNFα) cytokines. Within 4h after HS treatment IL1β-induced responses return to normal levels, but the recovery of the TNFα-induced responses is delayed. Using siRNA knock-down of Heat Shock Factor 1 and mathematical modelling we show that the stimulus-specificity is conferred via the Inhibitory κB kinase signalosome, with HSR differentially controlling individual cytokine transduction pathways. Finally, using a novel mathematical model we predict and experimentally validate that the HSR cross-talk confers differential cytokine sensitivity of the NF-κB system to a range of physiological and clinically-relevant temperatures. This quantitative understanding of NF-κB and HSR cross-talk mechanisms is fundamentally important for the potential improvement of current hyperthermia protocols.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Anna Paszek ◽  
Małgorzata Kardyńska ◽  
James Bagnall ◽  
Jarosław Śmieja ◽  
David G. Spiller ◽  
...  

Author(s):  
Rena Onoguchi-Mizutani ◽  
Yoshihiro Kishi ◽  
Yoko Ogura ◽  
Yuuki Nishimura ◽  
Naoto Imamachi ◽  
...  

Abstract The heat-shock response is a crucial system for survival of organisms under heat stress. During heat-shock stress, gene expression is globally suppressed, but expression of some genes, such as chaperone genes, is selectively promoted. These selectively activated genes have critical roles in the heat-shock response, so it is necessary to discover heat-inducible genes to reveal the overall heat-shock response picture. The expression profiling of heat-inducible protein-coding genes has been well-studied, but that of non-coding genes remains unclear in mammalian systems. Here, we used RNA-seq analysis of heat shock-treated A549 cells to identify seven novel long non-coding RNAs that responded to heat shock. We focussed on CTD-2377D24.6 RNA, which is most significantly induced by heat shock, and found that the promoter region of CTD-2377D24.6 contains the binding site for transcription factor HSF1 (heat shock factor 1), which plays a central role in the heat-shock response. We confirmed that HSF1 knockdown cancelled the induction of CTD-2377D24.6 RNA upon heat shock. These results suggest that CTD-2377D24.6 RNA is a novel heat shock-inducible transcript that is transcribed by HSF1.


2002 ◽  
Vol 205 (20) ◽  
pp. 3231-3240 ◽  
Author(s):  
Bradley A. Buckley ◽  
Gretchen E. Hofmann

SUMMARYThe intracellular build-up of thermally damaged proteins following exposure to heat stress results in the synthesis of a family of evolutionarily conserved proteins called heat shock proteins (Hsps) that act as molecular chaperones, protecting the cell against the aggregation of denatured proteins. The transcriptional regulation of heat shock genes by heat shock factor 1(HSF1) has been extensively studied in model systems, but little research has focused on the role HSF1 plays in Hsp gene expression in eurythermal organisms from broadly fluctuating thermal environments. The threshold temperature for Hsp induction in these organisms shifts with the recent thermal history of the individual but the mechanism by which this plasticity in Hsp induction temperature is achieved is unknown. We examined the effect of thermal acclimation on the heat-activation of HSF1 in the eurythermal teleost Gillichthys mirabilis. After a 5-week acclimation period (at 13, 21 or 28°C) the temperature of HSF1 activation was positively correlated with acclimation temperature. HSF1 activation peaked at 27°C in fish acclimated to 13°C, at 33°C in the 21°C group, and at 36°C in the 28°C group. Concentrations of both HSF1 and Hsp70 in the 28°C group were significantly higher than in the colder acclimated fish. Plasticity in HSF1 activation may be important to the adjustable nature of the heat shock response in eurythermal organisms and the environmental control of Hsp gene expression.


2000 ◽  
Vol 13 (4) ◽  
pp. 297-302 ◽  
Author(s):  
Ziya Akçetin ◽  
Reinhard Pregla ◽  
Dorothea Darmer ◽  
Hans-Jürgen Brömme ◽  
Jürgen Holtz

2006 ◽  
Vol 84 (5) ◽  
pp. 703-712 ◽  
Author(s):  
Silvia Fossati ◽  
Laura Formentini ◽  
Zhao-Qi Wang ◽  
Flavio Moroni ◽  
Alberto Chiarugi

Poly(ADP-ribose) polymerase-1 (PARP-1)-dependent poly(ADP-ribose) formation is emerging as a key regulator of transcriptional regulation, even though the targets and underlying molecular mechanisms have not yet been clearly identified. In this study, we gathered information on the role of PARP-1 activity in the heat shock response of mouse fibroblasts. We show that DNA binding of heat shock factor (HSF)-1 was impaired by PARP-1 activity in cellular extracts, and was higher in PARP-1−/− than in PARP-1+/+ cells. No evidence for HSF-1 poly(ADP-ribosyl)ation or PARP-1 interaction was found, but a poly(ADP-ribose) binding motif was identified in the transcription factor amino acid sequence. Consistent with data on HSF-1, the expression of heat-shock protein (HSP)-70 and HSP–27 was facilitated in cells lacking PARP-1. Thermosensitivity, however, was higher in PARP-1−/− than in PARP-1+/+ cells. Accordingly, we report that heat-shocked PARP-1 null fibroblasts showed an increased activation of proapoptotic JNK and decreased transcriptional efficiency of prosurvival NF-κB compared with wild-type counterparts. The data indicate that poly(ADP-ribosyl)ation finely regulates HSF-1 activity, and emphasize the complex role of PARP-1 in the heat-shock response of mammalian cells.


2017 ◽  
Author(s):  
Ronen B Kopito ◽  
Kathie Watkins ◽  
Erel Levine

Exposure to high temperatures has an adverse effect on cellular processes and results in activation of the cellular heat shock response (HSR), a highly conserved program of inducible genes to maintain protein homeostasis1. The insulin/IGF-1 signaling (IIS) pathway, which has diverse roles from metabolism to stress response and longevity, is activated as part of the HSR2–4. Recent evidence suggest that the IIS pathway is able to affect proteostasis non-autonomously5,6, yet it is not known if it is activated autonomously in stressed cells or systemically as part of an organismic program. In Caenorhabditis elegans, the single forkhead box O (FOXO) homologue DAF-16 functions as the major target of the IIS pathway7 and, together with the heat-shock factor HSF-1, induce the expression of small heat shock proteins in response to heat shock8–10,3. Here we use a novel microfluidic device that allows precise control of the spatiotemporal temperature profile to show that cellular activation of DAF-16 integrates local temperature sensation with systemic signals. We demonstrate that DAF-16 activation in head sensory neurons is essential for DAF-16 activation in other tissues, but show that no known thermosensory neuron is individually required. Our findings demonstrate that systemic and cell-autonomous aspects of stress response act together to facilitate a coordinated cellular response at the organismic level.


2021 ◽  
Author(s):  
Rena Onoguchi-Mizutani ◽  
Yoshitaka Kirikae ◽  
Yoko Ogura ◽  
Tony Gutschner ◽  
Sven Diederichs ◽  
...  

The heat shock response is critical for the survival of all organisms. Metastasis-associated long adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA localized in nuclear speckles, but its physiological role remains elusive. Here, we show that heat shock induces translocation of MALAT1 to a distinct nuclear body named heat shock-inducible noncoding RNA-containing nuclear (HiNoCo) body in mammalian cells. The MALAT1 knockout A549 cells showed reduced proliferation after heat shock. The HiNoCo body, formed by a nearby nuclear speckle, is distinct from any other known nuclear bodies, including the nuclear stress body, Cajal body, germs, paraspeckles, nucleoli, and promyelocytic leukemia body. The formation of HiNoCo body is reversible and independent of heat shock factor 1, the master transcription regulator of the heat shock response. Our results suggest the HiNoCo body participates in heat shock factor 1-independent heat shock responses in mammalian cells.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Jacob M Garrigues ◽  
Brian V Tsu ◽  
Matthew D Daugherty ◽  
Amy E Pasquinelli

Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR.


2021 ◽  
Author(s):  
Surabhi Chowdhary ◽  
Amoldeep S. Kainth ◽  
Sarah Paracha ◽  
David S. Gross ◽  
David Pincus

Mammalian developmental and disease-associated genes concentrate large quantities of the transcriptional machinery by forming membrane-less compartments known as transcriptional condensates. However, it is unknown whether these structures are evolutionarily conserved, capable of stress-inducible gene activation or involved in 3D genome reorganization. Here, we identify inducible transcriptional condensates in the yeast heat shock response (HSR). HSR condensates are biophysically dynamic spatiotemporal clusters of the sequence-specific transcription factor Heat shock factor 1 (Hsf1) with Mediator and RNA Pol II. Uniquely, HSR condensates drive the coalescence of multiple Hsf1 target genes, even those located on different chromosomes. Binding of the chaperone Hsp70 to a site on Hsf1 represses clustering, while an intrinsically disordered region on Hsf1 promotes condensate formation and intergenic interactions. Mutation of both Hsf1 determinants reprograms HSR condensates to become mammalian-like: constitutively active without intergenic coalescence. These results suggest that transcriptional condensates are ancient and flexible compartments of eukaryotic gene control.


Sign in / Sign up

Export Citation Format

Share Document