scholarly journals Impact of between-tissue differences on pan-cancer predictions of drug sensitivity

2019 ◽  
Author(s):  
John P. Lloyd ◽  
Matthew Soellner ◽  
Sofia D. Merajver ◽  
Jun Z. Li

ABSTRACTIncreased availability of drug response and genomics data for many tumor cell lines has accelerated the development of pan-cancer prediction models of drug response. However, it is unclear how much between-tissue differences in drug response and molecular characteristics may contribute to pan-cancer predictions. Also unknown is whether the performance of pan-cancer models could vary by cancer type. Here, we built a series of pan-cancer models using two datasets containing 346 and 504 cell lines with MEK inhibitor (MEKi) response and RNA, SNP, and CNV data, and found that, while the tissue-level drug responses are accurately predicted (between-tissue ρ=0.88-0.98), only 5 of 10 cancer types showed successful within-tissue prediction performance (within-tissue ρ=0.11-0.64). Between-tissue differences make substantial contributions to the performance of pan-cancer MEKi response predictions, as we estimate that exclusion of between-tissue signals leads to a 22% decrease in performance metrics. In practice, joint analysis of multiple cancer types usually has a larger sample size, hence greater power, than for one cancer type; and we observe that the higher accuracy of pan-cancer prediction of MEKi response is almost entirely due to the sample size advantage. Success of pan-cancer prediction reveals how drug response in different cancers may invoke shared regulatory mechanisms despite tissue-specific routes of oncogenesis, yet predictions in different cancer types require flexible incorporation of between-cancer and within-cancer signals. As most datasets in genome sciences contain multiple levels of heterogeneity, careful parsing of group characteristics and within-group, individual variation is essential when making robust inference.

2021 ◽  
Vol 17 (2) ◽  
pp. e1008720
Author(s):  
John P. Lloyd ◽  
Matthew B. Soellner ◽  
Sofia D. Merajver ◽  
Jun Z. Li

Increased availability of drug response and genomics data for many tumor cell lines has accelerated the development of pan-cancer prediction models of drug response. However, it is unclear how much between-tissue differences in drug response and molecular characteristics may contribute to pan-cancer predictions. Also unknown is whether the performance of pan-cancer models could vary by cancer type. Here, we built a series of pan-cancer models using two datasets containing 346 and 504 cell lines, each with MEK inhibitor (MEKi) response and mRNA expression, point mutation, and copy number variation data, and found that, while the tissue-level drug responses are accurately predicted (between-tissue ρ = 0.88–0.98), only 5 of 10 cancer types showed successful within-tissue prediction performance (within-tissue ρ = 0.11–0.64). Between-tissue differences make substantial contributions to the performance of pan-cancer MEKi response predictions, as exclusion of between-tissue signals leads to a decrease in Spearman’s ρ from a range of 0.43–0.62 to 0.30–0.51. In practice, joint analysis of multiple cancer types usually has a larger sample size, hence greater power, than for one cancer type; and we observe that higher accuracy of pan-cancer prediction of MEKi response is almost entirely due to the sample size advantage. Success of pan-cancer prediction reveals how drug response in different cancers may invoke shared regulatory mechanisms despite tissue-specific routes of oncogenesis, yet predictions in different cancer types require flexible incorporation of between-cancer and within-cancer signals. As most datasets in genome sciences contain multiple levels of heterogeneity, careful parsing of group characteristics and within-group, individual variation is essential when making robust inference.


2022 ◽  
Author(s):  
James W. Webber ◽  
Kevin M. Elias

Background: Cancer identification is generally framed as binary classification, normally discrimination of a control group from a single cancer group. However, such models lack any cancer-specific information, as they are only trained on one cancer type. The models fail to account for competing cancer risks. For example, an ostensibly healthy individual may have any number of different cancer types, and a tumor may originate from one of several primary sites. Pan-cancer evaluation requires a model trained on multiple cancer types, and controls, simultaneously, so that a physician can be directed to the correct area of the body for further testing. Methods: We introduce novel neural network models to address multi-cancer classification problems across several data types commonly applied in cancer prediction, including circulating miRNA expression, protein, and mRNA. In particular, we present an analysis of neural network depth and complexity, and investigate how this relates to classification performance. Comparisons of our models with state-of-the-art neural networks from the literature are also presented. Results: Our analysis evidences that shallow, feed-forward neural net architectures offer greater performance when compared to more complex deep feed-forward, Convolutional Neural Network (CNN), and Graph CNN (GCNN) architectures considered in the literature. Conclusion: The results show that multiple cancers and controls can be classified accurately using the proposed models, across a range of expression technologies in cancer prediction. Impact: This study addresses the important problem of pan-cancer classification, which is often overlooked in the literature. The promising results highlight the urgency for further research.


2021 ◽  
Vol 20 ◽  
pp. 117693512110024
Author(s):  
Jason D Wells ◽  
Jacqueline R Griffin ◽  
Todd W Miller

Motivation: Despite increasing understanding of the molecular characteristics of cancer, chemotherapy success rates remain low for many cancer types. Studies have attempted to identify patient and tumor characteristics that predict sensitivity or resistance to different types of conventional chemotherapies, yet a concise model that predicts chemosensitivity based on gene expression profiles across cancer types remains to be formulated. We attempted to generate pan-cancer models predictive of chemosensitivity and chemoresistance. Such models may increase the likelihood of identifying the type of chemotherapy most likely to be effective for a given patient based on the overall gene expression of their tumor. Results: Gene expression and drug sensitivity data from solid tumor cell lines were used to build predictive models for 11 individual chemotherapy drugs. Models were validated using datasets from solid tumors from patients. For all drug models, accuracy ranged from 0.81 to 0.93 when applied to all relevant cancer types in the testing dataset. When considering how well the models predicted chemosensitivity or chemoresistance within individual cancer types in the testing dataset, accuracy was as high as 0.98. Cell line–derived pan-cancer models were able to statistically significantly predict sensitivity in human tumors in some instances; for example, a pan-cancer model predicting sensitivity in patients with bladder cancer treated with cisplatin was able to significantly segregate sensitive and resistant patients based on recurrence-free survival times ( P = .048) and in patients with pancreatic cancer treated with gemcitabine ( P = .038). These models can predict chemosensitivity and chemoresistance across cancer types with clinically useful levels of accuracy.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e14576-e14576
Author(s):  
Xinlu Liu ◽  
Jiasheng Xu ◽  
Jian Sun ◽  
Deng Wei ◽  
Xinsheng Zhang ◽  
...  

e14576 Background: Clinically, MSI had been used as an important molecular marker for the prognosis of colorectal cancer and other solid tumors and the formulation of adjuvant treatment plans, and it had been used to assist in the screening of Lynch syndrome. However, there were currently few reports on the incidence of MSI-H in Chinese pan-cancer patients. This study described the occurrence of MSI in a large multi-center pan-cancer cohort in China, and explored the correlation between MSI and patients' TMB, age, PD-L1 expression and other indicators. Methods: The study included 8361 patients with 8 cancer types from multiple tumor centers. Use immunohistochemistry to detect the expression of MMR protein (MLH1, MSH2, MSH6 and PMS2) in patients with various cancer types to determine the MSI status and detect the expression of PD-L1 in patients. Through NGS technology, 831 genes of 8361 Chinese cancer patients were sequenced and the tumor mutation load of the patients was calculated. The MSI mutations of patients in 8 cancer types were analyzed and the correlation between MSI mutations of patients and the patient's age, TMB and PD-L1 expression was analyzed. Results: The test results showed that MSI patients accounted for 1.66% of pan-cancers. Among them, MSI-H patients accounted for the highest proportion in intestinal cancer, reaching 7.2%. The correlation analysis between MSI and TMB was performed on patients of various cancer types. The results showed that: in each cancer type, MSI-H patients had TMB greater than 10, and 26.83% of MSI-H patients had TMB greater than 100 in colorectal cancer patients. The result of correlation analysis showed that there was no significant correlation between the patient's age and the risk of MSI mutation ( P> 0.05). In addition to PAAD and LUAD, the expression of PD-L1 in MSI-H patients was higher than that in MSS patients in other cancer types( P< 0.05). The correlation analysis between PD-L1 expression and TMB in patients found that in colorectal cancer, the higher the expression of PD-L1, the higher the patient's TMB ( P< 0.05). Conclusions: In this study, we explored the incidence of MSI-H in pan-cancer patients in China and found that the TMB was greater than 10 in patients with MSI-H. Compared with MSS patients, MSI-H patients have higher PD-L1 expression, and the higher the PD-L1 expression in colorectal cancer, the higher the TMB value of patients.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1816
Author(s):  
Xiaoli Zhang ◽  
Shuai Shao ◽  
Lang Li

Class-3 semaphorins (SEMA3s), initially characterized as axon guidance cues, have been recognized as key regulators for immune responses, angiogenesis, tumorigenesis and drug responses. The functions of SEMA3s are attributed to the activation of downstream signaling cascades mainly mediated by cell surface receptors neuropilins (NRPs) and plexins (PLXNs), yet their roles in human cancers are not completely understood. Here, we provided a detailed pan-cancer analysis of NRPs and PLXNs in their expression, and association with key signal transducers, patient survival, tumor microenvironment (TME), and drug responses. The expression of NRPs and PLXNs were dysregulated in many cancer types, and the majority of them were further dysregulated in metastatic tumors, indicating a role in metastatic progression. Importantly, the expression of these genes was frequently associated with key transducers, patient survival, TME, and drug responses; however, the direction of the association varied for the particular gene queried and the specific cancer type/subtype tested. Specifically, NRP1, NRP2, PLXNA1, PLXNA3, PLXNB3, PLXNC1, and PLXND1 were primarily associated with aggressive phenotypes, whereas the rest were more associated with favorable prognosis. These data highlighted the need to study each as a separate entity in a cancer type- and subtype-dependent manner.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rongchuan Zhao ◽  
Xiaohan Sa ◽  
Nan Ouyang ◽  
Hong Zhang ◽  
Jiao Yang ◽  
...  

Numerous studies have identified various prognostic long non-coding RNAs (LncRNAs) in a specific cancer type, but a comprehensive pan-cancer analysis for prediction of LncRNAs that may serve as prognostic biomarkers is of great significance to be performed. Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. There is an urgent need to identify novel therapies for GBM due to its poor prognosis and universal recurrence. Using available LncRNA expression data of 12 cancer types and survival data of 30 cancer types from online databases, we identified 48 differentially expressed LncRNAs in cancers as potential pan-cancer prognostic biomarkers. Two candidate LncRNAs were selected for validation in GBM. By the expression detection in GBM cell lines and survival analysis in GBM patients, we demonstrated the reliability of the list of pan-cancer prognostic LncRNAs obtained above. By constructing LncRNA-mRNA-drug network in GBM, we predicted novel drug-target interactions for GBM correlated LncRNA. This analysis has revealed common prognostic LncRNAs among cancers, which may provide insights into cancer pathogenesis and novel drug target in GBM.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yongsoo Kim ◽  
Tycho Bismeijer ◽  
Wilbert Zwart ◽  
Lodewyk F. A. Wessels ◽  
Daniel J. Vis

Abstract Integrative analyses that summarize and link molecular data to treatment sensitivity are crucial to capture the biological complexity which is essential to further precision medicine. We introduce Weighted Orthogonal Nonnegative parallel factor analysis (WON-PARAFAC), a data integration method that identifies sparse and interpretable factors. WON-PARAFAC summarizes the GDSC1000 cell line compendium in 130 factors. We interpret the factors based on their association with recurrent molecular alterations, pathway enrichment, cancer type, and drug-response. Crucially, the cell line derived factors capture the majority of the relevant biological variation in Patient-Derived Xenograft (PDX) models, strongly suggesting our factors capture invariant and generalizable aspects of cancer biology. Furthermore, drug response in cell lines is better and more consistently translated to PDXs using factor-based predictors as compared to raw feature-based predictors. WON-PARAFAC efficiently summarizes and integrates multiway high-dimensional genomic data and enhances translatability of drug response prediction from cell lines to patient-derived xenografts.


2016 ◽  
Vol 15 ◽  
pp. CIN.S31809
Author(s):  
Manama El Baroudi ◽  
Caterina Cinti ◽  
Enrico Capobianco

Pan-cancer studies are particularly relevant not only for addressing the complexity of the inherently observed heterogeneity but also for identifying clinically relevant features that may be common to the cancer types. Immune system regulations usually reveal synergistic modulation with other cancer mechanisms and in combination provide insights on possible advances in cancer immunotherapies. Network inference is a powerful approach to decipher pan-cancer systems dynamics. The methodology proposed in this study elucidates the impacts of epigenetic treatment on the drivers of complex pan-cancer regulation circuits involving cell lines of five cancer types. These patterns were observed from differential gene expression measurements following demethylation with 5-azacytidine. Networks were built to establish associations of phenotypes at molecular level with cancer hallmarks through both transcriptional and post-transcriptional regulation mechanisms. The most prominent feature that emerges from our integrative network maps, linking pathway landscapes to disease and drug-target associations, refers primarily to a mosaic of immune-system crosslinked influences. Therefore, characteristics initially evidenced in single cancer maps become motifs well summarized by network cores and fingerprints.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Joel Nulsen ◽  
Hrvoje Misetic ◽  
Christopher Yau ◽  
Francesca D. Ciccarelli

Abstract Background Identifying the complete repertoire of genes that drive cancer in individual patients is crucial for precision oncology. Most established methods identify driver genes that are recurrently altered across patient cohorts. However, mapping these genes back to patients leaves a sizeable fraction with few or no drivers, hindering our understanding of cancer mechanisms and limiting the choice of therapeutic interventions. Results We present sysSVM2, a machine learning software that integrates cancer genetic alterations with gene systems-level properties to predict drivers in individual patients. Using simulated pan-cancer data, we optimise sysSVM2 for application to any cancer type. We benchmark its performance on real cancer data and validate its applicability to a rare cancer type with few known driver genes. We show that drivers predicted by sysSVM2 have a low false-positive rate, are stable and disrupt well-known cancer-related pathways. Conclusions sysSVM2 can be used to identify driver alterations in patients lacking sufficient canonical drivers or belonging to rare cancer types for which assembling a large enough cohort is challenging, furthering the goals of precision oncology. As resources for the community, we provide the code to implement sysSVM2 and the pre-trained models in all TCGA cancer types (https://github.com/ciccalab/sysSVM2).


2020 ◽  
Author(s):  
Tae Yoon Park ◽  
Mark D.M. Leiserson ◽  
Gunnar W. Klau ◽  
Benjamin J. Raphael

AbstractRecent genome-wide CRISPR-Cas9 loss-of-function screens have identified genetic dependencies across many cancer cell lines. Associations between these dependencies and genomic alterations in the same cell lines reveal phenomena such as oncogene addiction and synthetic lethality. However, comprehensive characterization of such associations is complicated by complex interactions between genes across genetically heterogeneous cancer types. We introduce SuperDendrix, an algorithm to identify differential dependencies across cell lines and to find associations between differential dependencies and combinations of genetic alterations and cell-type-specific markers. Application of SuperDendrix to CRISPR-Cas9 loss-of-function screens from 554 cancer cell lines reveals a landscape of associations between differential dependencies and genomic alterations across multiple cancer pathways in different combinations of cancer types. We find that these associations respect the position and type of interactions within pathways with increased dependencies on downstream activators of pathways, such as NFE2L2 and decreased dependencies on upstream activators of pathways, such as CDK6. SuperDendrix also reveals dozens of dependencies on lineage-specific transcription factors, identifies cancer-type-specific correlations between dependencies, and enables annotation of individual mutated residues.


Sign in / Sign up

Export Citation Format

Share Document