scholarly journals Integrative approaches for large-scale transcriptome-wide association studies

2015 ◽  
Author(s):  
Alexander Gusev ◽  
Arthur Ko ◽  
Huwenbo Shi ◽  
Gaurav Bhatia ◽  
Wonil Chung ◽  
...  

Many genetic variants influence complex traits by modulating gene expression, thus altering the abundance levels of one or multiple proteins. In this work we introduce a powerful strategy that integrates gene expression measurements with large-scale genome-wide association data to identify genes whose cis-regulated expression is associated to complex traits. We use a relatively small reference panel of individuals for which both genetic variation and gene expression have been measured to impute gene expression into large cohorts of individuals and identify expression-trait associations. We extend our methods to allow for indirect imputation of the expression-trait association from summary association statistics of large-scale GWAS1-3. We applied our approaches to expression data from blood and adipose tissue measured in ~3,000 individuals overall. We then imputed gene expression into GWAS data from over 900,000 phenotype measurements4-6 to identify 69 novel genes significantly associated to obesity-related traits (BMI, lipids, and height). Many of the novel genes were associated with relevant phenotypes in the Hybrid Mouse Diversity Panel. Overall our results showcase the power of integrating genotype, gene expression and phenotype to gain insights into the genetic basis of complex traits.

2019 ◽  
Author(s):  
Wen Zhang ◽  
Georgios Voloudakis ◽  
Veera M. Rajagopal ◽  
Ben Reahead ◽  
Joel T. Dudley ◽  
...  

AbstractTranscriptome-wide association studies integrate gene expression data with common risk variation to identify gene-trait associations. By incorporating epigenome data to estimate the functional importance of genetic variation on gene expression, we improve the accuracy of transcriptome prediction and the power to detect significant expression-trait associations. Joint analysis of 14 large-scale transcriptome datasets and 58 traits identify 13,724 significant expression-trait associations that converge to biological processes and relevant phenotypes in human and mouse phenotype databases. We perform drug repurposing analysis and identify known and novel compounds that mimic or reverse trait-specific changes. We identify genes that exhibit agonistic pleiotropy for genetically correlated traits that converge on shared biological pathways and elucidate distinct processes in disease etiopathogenesis. Overall, this comprehensive analysis provides insight into the specificity and convergence of gene expression on susceptibility to complex traits.


2018 ◽  
Author(s):  
Karl A. G. Kremling ◽  
Christine H. Diepenbrock ◽  
Michael A. Gore ◽  
Edward S. Buckler ◽  
Nonoy B. Bandillo

AbstractModern improvement of complex traits in agricultural species relies on successful associations of heritable molecular variation with observable phenotypes. Historically, this pursuit has primarily been based on easily measurable genetic markers. The recent advent of new technologies allows assaying and quantifying biological intermediates (hereafter endophenotypes) which are now readily measurable at a large scale across diverse individuals. The potential of using endophenotypes for dissecting traits of interest remains underexplored in plants. The work presented here illustrated the utility of a large-scale (299 genotype and 7 tissue) gene expression resource to dissect traits across multiple levels of biological organization. Using single-tissue- and multi-tissue-based transcriptome-wide association studies (TWAS), we revealed that about half of the functional variation for agronomic and seed quality (carotenoid, tocochromanol) traits is regulatory. Comparing the efficacy of TWAS with genome-wide association studies (GWAS) and an ensemble approach that combines both GWAS and TWAS, we demonstrated that results of TWAS in combination with GWAS increase the power to detect known genes and aid in prioritizing likely causal genes. Using a variance partitioning approach in the independent maize Nested Association Mapping (NAM) population, we also showed that the most strongly associated genes identified by combining GWAS and TWAS explain more heritable variance for a majority of traits, beating the heritability captured by the random genes and the genes identified by GWAS or TWAS alone. This improves not only the ability to link genes to phenotypes, but also highlights the phenotypic consequences of regulatory variation in plants.Author summaryWe examined the ability to associate variability in gene expression directly with terminal phenotypes of interest, as a supplement linking genotype to phenotype. We found that transcriptome-wide association studies (TWAS) are a useful accessory to genome-wide association studies (GWAS). In a combined test with GWAS results, TWAS improves the capacity to re-detect genes known to underlie quantitative trait loci for kernel and agronomic phenotypes. This improves not only the capacity to link genes to phenotypes, but also illustrates the widespread importance of regulation for phenotype.


2018 ◽  
Author(s):  
Doug Speed ◽  
David J Balding

LD Score Regression (LDSC) has been widely applied to the results of genome-wide association studies. However, its estimates of SNP heritability are derived from an unrealistic model in which each SNP is expected to contribute equal heritability. As a consequence, LDSC tends to over-estimate confounding bias, under-estimate the total phenotypic variation explained by SNPs, and provide misleading estimates of the heritability enrichment of SNP categories. Therefore, we present SumHer, software for estimating SNP heritability from summary statistics using more realistic heritability models. After demonstrating its superiority over LDSC, we apply SumHer to the results of 24 large-scale association studies (average sample size 121 000). First we show that these studies have tended to substantially over-correct for confounding, and as a result the number of genome-wide significant loci has under-reported by about 20%. Next we estimate enrichment for 24 categories of SNPs defined by functional annotations. A previous study using LDSC reported that conserved regions were 13-fold enriched, and found a further twelve categories with above 2-fold enrichment. By contrast, our analysis using SumHer finds that conserved regions are only 1.6-fold (SD 0.06) enriched, and that no category has enrichment above 1.7-fold. SumHer provides an improved understanding of the genetic architecture of complex traits, which enables more efficient analysis of future genetic data.


2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.


2018 ◽  
Author(s):  
Xuanyao Liu ◽  
Yang I Li ◽  
Jonathan K Pritchard

Early genome-wide association studies (GWAS) led to the surprising discovery that, for typical complex traits, the most significant genetic variants contribute only a small fraction of the estimated heritability. Instead, it has become clear that a huge number of common variants, each with tiny effects, explain most of the heritability. Previously, we argued that these patterns conflict with standard conceptual models, and that new models are needed. Here we provide a formal model in which genetic contributions to complex traits can be partitioned into direct effects from core genes, and indirect effects from peripheral genes acting as trans-regulators. We argue that the central importance of peripheral genes is a direct consequence of the large contribution of trans-acting variation to gene expression variation. In particular, we propose that if the core genes for a trait are co-regulated – as seems likely – then the effects of peripheral variation can be amplified by these co-regulated networks such that nearly all of the genetic variance is driven by peripheral genes. Thus our model proposes a framework for understanding key features of the architecture of complex traits.


2019 ◽  
Author(s):  
Yuhua Zhang ◽  
Corbin Quick ◽  
Ketian Yu ◽  
Alvaro Barbeira ◽  
Francesca Luca ◽  
...  

AbstractTranscriptome-wide association studies (TWAS), an integrative framework using expression quantitative trait loci (eQTLs) to construct proxies for gene expression, have emerged as a promising method to investigate the biological mechanisms underlying associations between genotypes and complex traits. However, challenges remain in interpreting TWAS results, especially regarding their causality implications. In this paper, we describe a new computational framework, probabilistic TWAS (PTWAS), to detect associations and investigate causal relationships between gene expression and complex traits. We use established concepts and principles from instrumental variables (IV) analysis to delineate and address the unique challenges that arise in TWAS. PTWAS utilizes probabilistic eQTL annotations derived from multi-variant Bayesian fine-mapping analysis conferring higher power to detect TWAS associations than existing methods. Additionally, PTWAS provides novel functionalities to evaluate the causal assumptions and estimate tissue- or cell-type specific causal effects of gene expression on complex traits. These features make PTWAS uniquely suited for in-depth investigations of the biological mechanisms that contribute to complex trait variation. Using eQTL data across 49 tissues from GTEx v8, we apply PTWAS to analyze 114 complex traits using GWAS summary statistics from several large-scale projects, including the UK Biobank. Our analysis reveals an abundance of genes with strong evidence of eQTL-mediated causal effects on complex traits and highlights the heterogeneity and tissue-relevance of these effects across complex traits. We distribute software and eQTL annotations to enable users performing rigorous TWAS analysis by leveraging the full potentials of the latest GTEx multi-tissue eQTL data.


2020 ◽  
Author(s):  
Min Zhao ◽  
Hong Qu

Abstract Background: Circular RNAs (circRNAs) play important roles in regulating gene expression through binding miRNAs and RNA binding proteins. Genetic variation of circRNAs may affect complex traits/diseases by changing their binding efficiency to target miRNAs and proteins. There is a growing demand for investigations of the functions of genetic changes using large-scale experimental evidence. However, there is no online genetic resource for circRNA genes. Results: We performed extensive genetic annotation of 295,526 circRNAs integrated from circBase, circNet and circRNAdb. All pre-computed genetic variants were presented at our online resource, circVAR, with data browsing and search functionality. We explored the chromosome-based distribution of circRNAs and their associated variants. We found that, based on mapping to the 1000 Genomes and ClinVAR databases, chromosome 17 has a relatively large number of circRNAs and associated common and health-related genetic variants. Following the annotation of genome wide association studies (GWAS)-based circRNA variants, we found many non-coding variants within circRNAs, suggesting novel mechanisms for common diseases reported from GWAS studies. For cancer-based somatic variants, we found that chromosome 7 has many highly complex mutations that have been overlooked in previous research. Conclusion: We used the circVAR database to collect SNPs and small insertions and deletions (INDELs) in putative circRNA regions and to identify their potential phenotypic information. To provide a reusable resource for the circRNA research community, we have published all the pre-computed genetic data concerning circRNAs and associated genes together with data query and browsing functions at http://soft.bioinfo-minzhao.org/circvar .


2018 ◽  
Author(s):  
Shubham Saini ◽  
Ileena Mitra ◽  
Nima Mousavi ◽  
Stephanie Feupe Fotsing ◽  
Melissa Gymrek

AbstractShort tandem repeats (STRs) are involved in dozens of Mendelian disorders and have been implicated in a variety of complex traits. However, existing technologies focusing on single nucleotide polymorphisms (SNPs) have not allowed for systematic STR association studies. Here, we leverage next-generation sequencing data from 479 families to create a SNP+STR reference haplotype panel for genome-wide imputation of STRs into SNP data. Imputation achieved an average of 97% concordance between genotyped and imputed STR genotypes in an external dataset compared to 63% expected under a random model. Performance varied widely across STRs, with near perfect concordance at bi-allelic STRs vs. 70% at highly polymorphic forensics markers. We demonstrate that imputation increases power over individual SNPs to detect STR associations using simulated phenotypes and gene expression data. This resource will enable the first large-scale STR association studies using existing SNP datasets, and will likely yield new insights into complex traits.


2019 ◽  
Vol 35 (19) ◽  
pp. 3576-3583 ◽  
Author(s):  
Chong Wu ◽  
Wei Pan

Abstract Motivation Most trait-associated genetic variants identified in genome-wide association studies (GWASs) are located in non-coding regions of the genome and thought to act through their regulatory roles. Results To account for enriched association signals in DNA regulatory elements, we propose a novel and general gene-based association testing strategy that integrates enhancer-target gene pairs and methylation quantitative trait locus data with GWAS summary results; it aims to both boost statistical power for new discoveries and enhance mechanistic interpretability of any new discovery. By reanalyzing two large-scale schizophrenia GWAS summary datasets, we demonstrate that the proposed method could identify some significant and novel genes (containing no genome-wide significant SNPs nearby) that would have been missed by other competing approaches, including the standard and some integrative gene-based association methods, such as one incorporating enhancer-target gene pairs and one integrating expression quantitative trait loci. Availability and implementation Software: wuchong.org/egmethyl.html Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Su ◽  
Wenqiang Li ◽  
Luxian Lv ◽  
Xiaoyan Li ◽  
Jinfeng Yang ◽  
...  

Anxiety disorders are common mental disorders that often result in disability. Recently, large-scale genome-wide association studies (GWASs) have identified several novel risk variants and loci for anxiety disorders (or anxiety traits). Nevertheless, how the reported risk variants confer risk of anxiety remains unknown. To identify genes whose cis-regulated expression levels are associated with risk of anxiety traits, we conducted a transcriptome-wide association study (TWAS) by integrating genome-wide associations from a large-scale GWAS (N = 175,163) (which evaluated anxiety traits based on Generalized Anxiety Disorder 2-item scale (GAD-2) score) and brain expression quantitative trait loci (eQTL) data (from the PsychENCODE and GTEx). We identified 19 and 17 transcriptome-wide significant (TWS) genes in the PsychENCODE and GTEx, respectively. Intriguingly, 10 genes showed significant associations with anxiety in both datasets, strongly suggesting that genetic risk variants may confer risk of anxiety traits by regulating the expression of these genes. Top TWS genes included RNF123, KANSL1-AS1, GLYCTK, CRHR1, DND1P1, MAPT and ARHGAP27. Of note, 25 TWS genes were not implicated in the original GWAS. Our TWAS identified 26 risk genes whose cis-regulated expression were significantly associated with anxiety, providing important insights into the genetic component of gene expression in anxiety disorders/traits and new clues for future drug development.


Sign in / Sign up

Export Citation Format

Share Document